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Abstract

This dissertation focuses on the use of nano-metallic structures in optical systems,
specifically in waveguide geometries and photodetectors. The use of metals makes it
possible to design optical components that are smaller than the wavelength of light. The
optical properties of metals at infrared and visible wavelengths enable such designs.

The first part of the dissertation focuses on waveguides and investigates the metal-
insulator-metal (ȚȖȚ) geometry. We begin by deriving the full set of modes that the ȚȖȚ
geometry supports. We show the necessity of taking into consideration all supported
modes through the use of mode-matching calculations. Following our analysis of the
modal structure of the ȚȖȚ waveguides, we then illustrate how to analyze junctions of
ȚȖȚ waveguides by designing a mode converter which converts the mode of a large
waveguide into that of a smaller waveguide. Our analysis uses scattering matrices and
is much faster than full-field simulations. We conclude the first part of the dissertation
by providing an exact circuit model for waveguide junctions.

The second part of the dissertation is about scattering of light off of nano-metallic
volumes. We review various techniques of scattering analysis, and then illustrate a
photodetector design which integrates an antenna for near-infrared wavelengths with a
sub-wavelength volume of Ge. The use of the antenna makes it possible to focus light
into a sub-wavelength volume. We then describe the experimental work we did with Si
photodetectors of different geometries and provide our measurement results. Finally,
we present our conclusions.
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“He who lights his taper at mine,

receives light without darkening

me.”

Thomas Jefferson

Chapter 1

Introduction

UțȑȒȟȠȡȎțȑȖțȔ ȡȕȒ properties of light, and how it interacts with matter has long
been studied by various civilizations [2]. First known experiments involved glass

spheres filled with water—that was how the lenses were made initially. Near the end
of the first millennium, people have understood the way in which light rays bend and
focus via lenses and curved mirrors. One of the first optical instruments to gain wide
usage was the eyeglass. With the help of convex lenses, longsightedness could be com-
pensated during the 13th century. Concave lenses were harder to make, and usage of
spectacles for short-sightedness did not spread until after the 15th century [3].

Then came the telescopes. People were finally able to make precise observations on
the heavenly bodies, and that led to a much better understanding of the universe. At
one point, telescopes were so popular, that it became fashionable to grind glass to make
one’s own lenses to build a telescope [3].¹ The development of the microscope also took
place during the same period. Biology got a big boost, and many new living organisms
were discovered following the invention of the microscope.

As the quality of glass improved and better grinding methods were developed, the
resolution of optical instruments advanced. Further improvements came through a
better understanding of the properties of light. Newton, among his other achievements
inmathematics and physics, showed that white light is composed of different colors. He

¹Similar mass popularization of technology would repeatedly occur following major breakthroughs,
as it did after the invention of the transistor when people started playing with electrical circuits, or after
the spread of the internet which popularized building home pages.

1



2 ȐȕȎȝȡȒȟ 1. ȖțȡȟȜȑȢȐȡȖȜț

designed a reflective telescope system, which did not suffer from the focusing problems
(chromatic aberrations) of the (refractive) lens systems, which led to his acceptance into
the Royal Society.

Although spectacles, telescopes and microscopes helped one see sharper, further
and smaller, it was not possible to record images permanently—the image was lost as
soon as the optical instrument was moved away. Children—amused by the images in
kaleidoscopes²—would have to wait until advances in chemistry led to the invention
of photography, and then the motion picture, to throw their kaleidoscopes away, and
instead ask to be taken to the cinema.

Principles of photography—one of the first examples of artificial light detection sys-
tems—go back to the camera obscura, the pinhole camera, which was very popular with
painters of the time to practice their skills. When combined with a lens, and a light
sensitive photographic film, the modern camera was born from the imaging principles
of the camera obscura. In addition to being a technology to record images, photography
became a form of art, and further acted as an ‘epistemology engine’ [5].

EadweardMuybridge’s experimentswith photographing galloping of horses—which
were commissioned by Leland Stanford—led to the formation of the motion picture:
the continuous recording of images in space and time. During the same period, prin-
ciples of electromagnetism were set on a solid mathematical theory by James Clerk
Maxwell—who, by the way, took the first color photograph. The invention and the pro-
liferation of the telegraph, the telephone and then the radio made it possible to send
texts, sounds, and images through the use of electrical signals.³ Advances in communi-
cation technologies were changing the daily lives of people. A new cultural connectivity
was being weaved among the masses by the artists—‘the antennas of race’ according to
Ezra Pound [6]—through their work that was being broadcast first by the radio stations
and then the television.

As it became possible to send information by electromagnetic signals, the need to

²Let us note in passing that David Brewster (of the Brewster’s angle in polarization optics) was the
inventor of the kaleidoscope [4].

³Visit http://www.archive.org/details/SpotNews1937 for a superb introduction to the wire-
photo technology of the 1930s. Many thanks to Zeynep Devrim Gürsel for informing me about this
link.

http://www.archive.org/details/SpotNews1937
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convert the images obtained by optical systems into electricity was born. Photographs
were rasterized into lines, each line was converted into an electrical waveform by the
use of a photodetector (initially made out of vacuum tubes, and then semiconductor
elements), the signal was then transmitted through a cable or through a radio channel
and finally the procedure was reversed on the receiving side to reproduce the image
remotely.

The advent of television came next. Images and sound could now be transmitted
over the air. Millions started watching ȡȣ—it became a part of almost every house-
hold that could afford to have one. Meanwhile, electronics technology was improving
at an unprecedented speed. ‘Smaller, faster, denser’ became the motto of the elec-
tronics industry. Increased knowledge in optics was one of the key drivers of such a
rapid progress. Optical lithography systems focused images of circuit diagrams onto
semiconductors coated with light sensitive films, which then were further processed to
fabricate integrated circuits with millions of interacting components, at an affordable
price. The word ‘computer’ acquired its current meaning [7]. During the same era,
laser was invented and contact lenses entered our lives.

Proliferation of computers increased the demand to automate, and to connect more
and more devices together. Research on networking of computers and on automating
their connectivity eventually led to the formation of a global computer network, the In-
ternet. This time, though, in contrast to the telegraphy or telephone networks of the
previous era, information was being carried by laser light for most of the distances.
Fiber optic cables were laid out under the oceans, across the continents: fiber was pre-
ferred over electrical cabling because signals could be sent much further, and because
of the immense bandwidth of the optical fiber—a single fiber optic cable was sufficient
to carry hundreds of thousands of telephone conversations worth of information.

Today, fiber optics form the infrastructure of many communication networks. Op-
tical communications is gaining wide spread usage, especially in areas where high in-
formation bandwidth is needed. For instance, today’s high speed routers use fibers to
connect their electrical boards together. The limited information carrying capacity of
electrical wires, the high energy required to charge and discharge electrical wires while
transmitting information at high speeds, synchronization problems due to different
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wire lengths and the related increased complexity of design are all leading to a shift to
using light for communications rather than electrons [8]. The question of whether or
not to use optics for distances shorter than that between electronics boards is becoming
more and more relevant. Optical communications at the chip to chip level, and even
for intra-chip distances is being actively researched.

If optics is to provide a solution, several problems need to be solved [9]. First of all,
there are strict energy requirements: optics should be at least as good, and even better
than the corresponding electrical alternatives. As a result, very low capacitance photode-
tectors, intimately integrated to signal amplifying transistors, are needed to convert the
information in light to electrical signals, which can then be processed by the electronics.
The current ȐȚȜȠ technology uses transistors of a few tens of nanometers in size, and
the size of transistors is projected to shrink further according to the ȖȡȟȠ roadmap.⁴

The size of electronics is much smaller than the wavelength of light (∼ 1500 nm for
fiber optics communications), whereas most optical components are required to have
at least a wavelength of size in order to be functional. The size mismatch between
electrical and optical components should be overcome in order to make optical com-
munications viable at shorter distances. Recent interest in the use of metals to design
optical components offers a way into designing optics at the subwavelength regime [10].
Properties of metals at optical frequencies enable those designs.

In this dissertation, we will start Chapter 2 by reviewing the optical properties of
metals. Then we will describe some of the metallic waveguiding geometries that have
been shown to focus light at the length scale of electronics. Of those geometries, the
metal-insulator-metal (ȚȖȚ) geometry is especially interesting as it allows the optical
fields to be concentrated in very small volumes. The modal structure of ȚȖȚ wave-
guides will be at our focus in Chapter 3. We will describe the necessary mathematical
framework to fully analyze ȚȖȚ waveguide modes, and show the necessity to include
different types of modes in order to be fully able to understand scattering within those
waveguides.

⁴http://www.itrs.net/Links/2007ITRS/Home2007.htm

http://www.itrs.net/Links/2007ITRS/Home2007.htm
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Chapter 4 will be about our work in developing simple models to predict the re-
sponse of optical fields in complicated waveguide networks. We will show how to con-
nect different types of ȚȖȚ waveguides together by providing the details of the design
of a mode-converter which is used to focus light coming from a wavelength sized opti-
cal mode into one which is much smaller than the wavelength. Furthermore, we will
develop exact circuit models for waveguide junctions and investigate their properties.

After having talked about waveguiding geometries, in Chapter 5 we will focus on
designing very low capacitance photodetectors. We will use a very small of volume
of semiconductor as our detector, and integrate the detector in an antenna geometry
in order to increase its sensitivity. We will borrow design topologies from microwave
electronics, and show how to apply them at optical frequencies.

Fabrication and measurement results will be the topic of Chapter 6. We will de-
scribe in detail our efforts at fabricating Si based antenna integrated photodetectors by
electron beam lithography and subsequent clean room processing. We will describe the
opto-electronic photocurrent measurement setup we built and provide our experimen-
tal results. At the end of Chapter 6 we will compare our results with those published in
the nanowire literature and comment on the possible effects which we observed. Lastly,
we will lay out our conclusions in Chapter 7.

Chapters 3 and 4 have been published in Physical Review B [11] and in ȖȒȒȒ Journal
of Selected Topics in Quantum Electronics [12] respectively.
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Chapter 2

Background Information

Iț ȡȕȖȠ ȐȕȎȝȡȒȟ we will outline some of the background information on optics with
metals. We will begin by a review of the optical properties of metals at various

frequency ranges via the use of the Lorentz model.

2.1 Permittivity of Metals

The Lorentz model is a simple phenomenological way of describing the optical prop-
erties of metals. It assumes the existence of non-interacting, independent oscillators
(electrons in the conduction band of a metal in our case) connected to fixed points in
space (ions in the lattice) by a spring of stiffness constant k. Let us call the charge of
electrons, −e, and their mass, m as shown in Figure 2.1. Furthermore, assume that the
electronmotion is damped by a factor 1/τ where τ is the average time between collisions
of the electrons with the lattice. The dynamical motion of electrons is given by

mr̈ + m
τ
ṙ + kr = −eE. (2.1)

We will use the e + jωt convention throughout the remainder of this chapter. In the
literature, some prefer to use e − jωt and therefore it is important to check the convention
in use before quoting a result from another work. The e + jωt choice causes the time

7
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. ..m
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.k
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Figure 2.1 – Simple model for the electrons in the Lorentz model.

derivatives to be replaced with jω and substitution into (2.1) gives

−ω2mr + jω
m
τ
r + kr = −eE. (2.2)

Now it is much easier to solve for the position, r. We get

r = (−e/m)E
k/m − ω2 + jω/τ

. (2.3)

In the limit of zero damping, that is as τ → ∞, the natural oscillation frequency of
the mass-spring system is given by ω0 =

√
k/m. That can be seen by setting E = 0 and

τ = ∞ in (2.2) and solving for the frequency which would lead to a nonzero position
vector, r.

Whenever a charge moves from its equilibrium position, there is a net induced
dipole moment, p, associated with the motion. For a single particle the dipole mo-
ment is described by p = −er. In the case of many oscillating dipoles, if one makes the
assumption that they all oscillate coherently, the total dipole moment density, P, of the
system is P = np = −enr where n is the density of electrons in the lattice. Substituting
the definition of r from (2.3) results in

P = (ne2/m)E
ω2
0 − ω2 + jω/τ

. (2.4)

At this stage, it is worthwhile to investigate the oscillation frequency of a collection of
charged particles of density, n, when they are displaced from their equilibrium position
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by an applied electric field, E. As shown in Figure 2.2, before the application of the
external field, positively charged ions and the negatively charged electrons are at an
equilibrium under the influence of the Coulomb forces among them. Application of an
external electric field, on the other hand, changes the equilibrium condition. Electrons
move in the direction opposite to the applied field until the net force on them, which
is the force due to the external field and the Coulomb attraction force from positive
ions, is zero. Now, assume that the external field, E, is turned off. There is a net force
on the electrons due to their separation from the ions. Under the assumption of zero
damping, electrons will oscillate back and forth around their initial equilibrium state.
The question is, what will be their oscillation frequency?
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Figure 2.2 – Distribution of positively charged ions and negatively charged electrons before (a) and
after (b) the application of electric field, E. Dashed arrow shows the induced field due to the move-
ment of electrons from their equilibrium state in (a).

A typical example from electrostatics is the calculation of the electric field in between
the plates of a parallel plate capacitor. The idea is to use the Gauss’ Law, ∇ ⋅D = ρ, to
integrate the charge density, ρ, over a volume defined by an infinitesimally small pillbox
shape which crosses both the metal and the air regions of the capacitor. Conversion of
the volume integral into a surface one and noting that the field inside a metal is zero
leads to the solution D� = ρ for the normal component of the displacement field. Here,
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we will make an analogy to the parallel plate case. As illustrated by the vertical dashed
lines in Figure 2.2(b), separation of positive and negative charges can be modeled as
an effective capacitor with a displacement vector D = D� = ρ = ner. Here, r is the
displacement of electrons from their equilibrium position in Figure 2.2(a). Given the
displacement, the electric field is E = D/єo = (ne/єo)r. The net force on an electron
of mass m is therefore, F = mr̈ = −eE. Using the e + jωt convention to change the time
derivatives to jω results in

−mω2r = −ne
2

єo
r.

For a nontrivial solution (r ≠ 0) to exist, the plasma oscillation frequency, which we
denote by ωp should be

ω2
p =

ne2

mєo
.

Using the definition of ω2
p in (2.4) and from the definition of the displacement vector

D = єoE + P, one gets the following for the relative permittivity єr

D =єoE + P = єE

єr ≡
є
єo
= 1 + χ = 1 + P

єoE

єr =1 +
ω2

p

ω2
o − ω2 + jω/τ

. (2.5)

Equation (2.5) is the Lorentz model for permittivity. Electrons in the conduction
band of metals act in a slightly simplified form. Because they are assumed to be free,
there are no springs that tie them to the positively charged ions. Hence ωo → 0 in the
case of metals. By neglecting ωo we get the Drude model for permittivity as

єm =1 +
ω2

p

−ω2 + jω/τ
. (2.6)

Note that at different frequency regimes, electrons behave differently. There are
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Figure 2.3 – Phase and amplitude of the permittivity for a Drude metal with δ = 1/τ = 0.01ωp. For
ω < δ, the permittivity is a predominantly imaginary number, for δ < ω < ωp it is close to being a
negative real number and for ω > ωp the sudden phase change shows that the permittivity becomes
a positive real quantity, with a magnitude close to unity.

three regimes of interest, ω < 1/τ, 1/τ < ω < ωp and ω > ωp. Let’s now analyze the
properties of the Drude metal at these different frequency regimes.

2.1.1 Microwave Regime

In this part of the spectrum, ω < 1/τ, the driving field frequency is lower than the
frequency of particle collisions. Therefore in each ‘optical’ cycle electrons go through
multiple collisions as they are being accelerated by the applied field. This is the regime
where electron movement is a drift motion and hence the velocity of electrons is pro-
portional to the applied field. Simplification of the terms in (2.6) gives

єm ≈
ω2

p

jω/τ
= − j ne

2τ
mєoω

. (2.7)
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The proportionality between velocity and the applied field can explain why the per-
mittivity is a negative imaginary number. Firstly, because electrons have a negative
charge v ∝ −E. From the definition of velocity we also have v = ṙ = jωr. Therefore,
r∝ jE. However, since dipole moment density P = np = −enr we have P∝ − jE. Since
єr = 1 + P/єoE, for ∣P/єoE∣ ≫ 1, the permittivity is a large negative imaginary number.
It is important to note that if the time derivatives were to be changed to − jω due to a
choice of the e − jωt convention, one would get a large, positive imaginary number for
the permittivity.

Formetals with a high conductivity, it is possible to lump conductivity into permittiv-
ity. FromMaxwell’s equations, we have∇×H = J+∂tD = σE+ jωєoE = jωєo(1− j σ/ωєo)E
where σ is the DC conductivity of the metal. If the DC conductivity is a large number
then єm ≈ − j σ/ωєo just like as in (2.7).

2.1.2 Infrared Regime

In this part of the spectrum, 1/τ < ω < ωp, electrons can follow the driving field and
they go through a negligible number of scattering events per optical cycle. The force on
the electrons, and therefore their acceleration is proportional to the applied field. Let
us try to guess what the sign of permittivity will be in this regime. We have a = r̈∝ −E.
The usual trick of converting time derivatives into jω results in, r∝ E. Again, from the
definition of dipole moment density, P ∝ −E. Also for the case 1/τ < ω < ωp it is still
true that ∣P/єoE∣ ≫ 1 and therefore permittivity is a negative real number. Of course,
that can also be seen by neglecting the 1/τ term in (2.6) to get

єm ≈ −
ω2

p

ω2 . (2.8)

2.1.3 Ultraviolet Regime

In this regime, where ω > ωp, individual electrons can still follow the field. Therefore
P ∝ −E still holds. However, as the frequency increases, the polarizability of electrons
decreases. Therefore, interaction between the driving field and the electrons decreases
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as the frequency of operation increases. Above and near the plasma oscillation fre-
quency ∣P/єoE∣ ≫ 1 no longer holds. As a result, the full form for the definition of the
relative permittivity, єr = 1 + P/єoE, must be used. Because the strength of polarization
is so small in this regime, permittivity becomes a positive real number and is described
as

єm ≈1 −
ω2

p

ω2 .

Experiments have shown that time between collisions, τ, for Au and Ag is on the
order of 30 fs [13]. Furthermore, the plasma oscillation frequency, ωp, for Au is about
6 × 1015 rad/sec which translates into a free space wavelength, λp, of 300 nm [14]. If
one defines the collision frequency as δ ≡ 1/τ, for a typical metal 0.01ωp < δ < 0.1ωp. In
Figure 2.3 we show the phase and amplitude of the permittivity for a Drude metal with
δ = 0.01ωp.

2.2 Surface Impedance of Metals

So far, we analyzed the permittivity of metals at different frequency regimes. In this
section, we will take a closer look at the way in which electromagnetic waves propagate
in a homogeneous metallic medium with a permittivity єm.

The space-time dependence of plane waves in homogeneous media is given by
exp( jωt − j kz) where k is the wave-vector associated with the field.¹ We know that
k = ω√єm/c where c refers to the speed of light in vacuum. The refractive index asso-
ciated with metals, n ≡ √єm, is a complex number. In order to have plane waves that
decay as z →∞ we will choose n = n′ − j n′′ where n′ and n′′ are both non-negative real
quantities and they represent the real and imaginary parts of the refractive index. Sub-
stituting the refractive index and rearranging terms gives us plane waves that propagate
as exp ( jω(t − n′z/c)) exp(−n′′ωz/c). The second exponential term leads to the decay
of the plane waves. The skin depth, ϰ, for fields is defined as the distance at which the

¹From now on, k will be used to represent the wave vectors—not the stiffness coefficient of springs
used in the Lorentz model.
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fields decay to 1/e of their peak value. We have ϰ = λ/(2πn′′).
In calculations involving the scattering of waves frommetallic objects, under certain

conditions it becomes possible to neglect the fields within the metallic objects and treat
the scattering through the use of approximate boundary conditions. For those cases
when ϰ ≪ λ and ϰ ≪ radius of curvature of the metal surface, the derivatives of the
field components inside themetal along the normal to the surface are large compared to
the tangential derivatives [15]. Therefore, the tangential fields will have a longer span in
themetal than the normal components—similar to the case of plane waves propagating
in a lossy medium. The field inside the metal near the surface can thus be regarded as
the field of a plane wave and the tangential electric and magnetic fields can be related
by

Et =
√

µ
є
n̂ ×Ht (2.9)

where n̂ is the unit vector along the outer normal to the surface. The problem of de-
termining external electromagnetic fields can be solved without considering the fields
inside the metal by the use of the boundary condition (2.9).

The surface impedance, ζ, with units of ohms (Ω), is defined for a non-magnetic
material as

ζ =
√

µo
є
= 1
n′ − j n′′

√
µo
єo
≈ 377Ω
n′ − j n′′

= n′ + j n′′

n′2 + n′′2
377Ω = ζ ′ + j ζ ′′.

Since the imaginary part of the refractive index is always negative in the e + jω t con-
vention (otherwise fields would exponentially grow, an unphysical scenario for inactive
media), the imaginary part of surface impedance, ζ ′′, is necessarily positive. From the
definition of inductance we know that

V = L dI
dt

Time Harmonic FieldsÐÐÐÐÐÐÐÐÐÐ→ V = (+ jωL)I.

Hence, a positive imaginary part can be associated with an effective inductance. From
the approximation to the permittivity at infrared frequencies one can get the inductance
of a metal surface as

L = ζ ′′

ω
= n′′/ω
n′2 + n′′2

377Ω.
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At infrared frequencies
√
єm is almost purely imaginary as can be seen from (2.8) and

as a result n′ ≈ 0. Therefore, we can estimate the surface inductance using n′′ =√−єm =
ωp/ω to be

L =377Ω
n′′ω

=
√

µo
єo

1
ωp
=
√

µo
єo

√
mєo
ne2
=
√

µom
ne2

.

The Lorentz model predicts a constant surface inductance. Therefore, the surface im-
pedance is predominantly imaginary, and is linearly proportional to frequency, i.e.
ζ = j ζ ′′ = jωL. We plot the surface impedance of gold as a function of frequency in
Figure 2.4 using the experimental values of permittivity for gold [16]. The slope of the
imaginary part of the impedance curve with respect to frequency is a constant over the
infrared regime, as expected from the prediction of the Lorentz model.

.

.

.
.0 .200 .400 .600 .800 .1,000 .1,200.0

.20

.40

.60

.80

.100

.120

.140

.160

.180

.Re(ζ)

.Im(ζ)

.

.Frequency (THz)

.Su
rf
ac
e
Im

pe
da
nc
e
(Ω
)

Figure 2.4 – Real and imaginary parts of the surface impedance for Au.
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2.3 Metal - Insulator Waveguides

After analyzing the optical properties of metals at different frequency regimes, now is
the time to investigate the basic properties of waveguides that use metals to confine
light. The first structure that will be investigated is the metal-insulator (ȚȖ) waveguide.
This is the simplest waveguide one can think of. Its properties were investigated in [17].
The structure is as shown in Figure 2.5.

.

.x

.z

.є i

.єm

Figure 2.5 – Geometry of the surface plasmon.

In order to have a guided mode, fields should decay exponentially into the metal
and insulator regions. We will assume that the mode is ȡȚ, i.e. Hz = 0. Due to the
exponential decay of the mode from the metal-insulator boundary and the continuous
nature of parallel component of electric fields, Ez should be of the form

Ez = Ezo e jωt− j kz
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e κmx x < 0

e −κ ix x > 0.
(2.10)

Using the vector identity∇×(∇×A) = ∇(∇⋅A)−∇2A and Maxwell’s equations, one
can write down the wave equation for the electric and magnetic fields as

∇2E + ω2µєE =0 (2.11)

∇2H + ω2µєH =0.

Given the assumed form for Ez in (2.10), substitution into (2.11) results in κ2m,i =
k2 − ω2µєoєm,i. Using (A.5) one can get the expression for the transverse magnetic field
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component as

Hy = jωєoEzo e jωt− j kz

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

єmκm
k2 − ω2µєoєm

e κmx x < 0

−єiκi
k2 − ω2µєoєi

e −κ ix x > 0.

From the definition of κm,i factors in the definition of Hy can be further simplified to
get

Hy = jωєoEzo e jωt− j kz

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

єm
κm

e κmx x < 0

−єi
κi

e −κ ix x > 0.
(2.12)

Tangential components of H should be continuous. From the expression in (2.12),
continuity of Hy results in κm/єm = −κi/єi. This is the dispersion equation for the MI
system. It relates the wave vector k to angular frequency ω. From the definition of κ2m,i

one can get the following equation for k

k2 = ω2

c2
єiєm
єi + єm

where c is the speed of light in vacuum. Here єm is the relative permittivity of the metal
as given in (2.6). We can see that, at low frequencies where ∣єm∣ ≫ 1, k ≈ ω/c. Also,
when єm ≈ −єi, k will take its maximum value. Assuming that the insulator side is air
and neglecting the imaginary part of єm to get єm ≈ 1 − (ωp/ω)2, the condition єm ≈ −1
will be true when ω ≈ 1/

√
2 ωp. In Figure 2.6 we plot the real and imaginary parts of k

for a Drude metal with δ = 1/τ = 0.05ωp.

It is worthwhile to investigate the properties of themode of the ȚȖ waveguide, which
is also sometimes called surface plasmon (Ƞȝ), as the frequency of operation varies. In
that respect, we plotted the skin depth of the fields into the insulator and the metal
regions for a surface plasmon in Figure 2.7. As can be seen from the figure, the mode
becomes unbounded at low frequencies. Around the surface plasmon frequency of
ω ≈ 1/

√
2 ωp, the mode gets tightly confined to the surface after which it begins to
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Figure 2.6 – Normalized ω − k diagram for an ȚȖ waveguide with δ = 1/τ = 0.05ωp. Dashed line
is the negative of the imaginary part of k whereas the solid line is the real part. kp = ωp/c. Dotted
lines show ω = k, ω = 1 and ω = 1/

√
2.

widen again. The skin depth for a plane wave hitting a metal surface is also plotted for
comparison. The same information is also visualized in a density plot by Figure 2.8
where the field intensity is plotted with respect to frequency.

2.4 Metal - Insulator - Metal Waveguides

After having analyzed the ȚȖ waveguide, the next step will be to investigate the light
guiding properties of the ȚȖȚ configuration. Similar to the case for the ȚȖ waveguide,
we will look at the ȡȚ modes of the system. Guided modes should decay as they get
further apart from the wave guiding region of the system. Therefore, in general the
field pattern for the longitudinal electric field is of the form
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Figure 2.7 – Skin depth vs ω for the surface plasmon mode and the bulk metal for δ = 1/τ = 0.05ωp.
λp = 2πc/ωp.

Ez = Ezo e jωt− j kz

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

AI e κmx x < 0

AII e κ ix + AIII e −κ ix 0 < x < d

AIV e −κmx x > d .

In order to find the transverse magnetic field, one can use (A.5) to get

Hy = jωєoEzo e jωt− j kz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

єm
κm

AI e κmx x < 0

єi
κi
(AII e κ ix − AIII e −κ ix) 0 < x < d

−єm
κm

AIV e −κmx x > d .

As can be seen, there are four unknowns: AI, AII, AIII, AIV . Continuity of Ez and
Hy at x = 0 and x = d results in 4 homogeneous equations in terms of the 4 unknowns.
The dispersion equation for the ȚȖȚ case comes from the condition which makes the
system of 4 homogeneous linear equations linearly dependent so that fields have finite
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Figure 2.8 – Mode profile for an MI waveguide with δ = 0.05ωp. x < 0 region is the metal, x > 0 is
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Figure 2.9 – Geometry of the metal-insulator-metal (ȚȖȚ) parallel plate waveguide.

solutions as opposed to the trivial Ai = 0 case where i ∈ {1, . . . , 4}. After some algebra,
it is not too difficult to obtain the dispersion relation

(1 − R
1 + R

)
2

= e −2κ id where R = −κm/єm
κi/єi

and κ2m,i = k2 − ω2µєoєm,i . (2.13)

Taking the square root of (2.13) results in (1 − R)/(1 + R) = ± e −κ id . Arranging terms
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and substituting the definition of R gives the following two equations:

єm
єi
tanh(κid

2
) + κm

κi
= 0 and

єm
єi

coth(κid
2
) + κm

κi
= 0.

It should be emphasized that, what we have done so far is no different than the for-
mulation for dielectric slab waveguides. We have simply redefined the slab region to
be the insulator covered with metal on the sides. Also note that, because єm is a com-
plex number, solution of the dispersion equations requires a two dimensional search
over the complex plane. That is not a simple task if one is interested in finding roots at
different frequency regimes for different insulator thicknesses.

This section gave only a cursory look at the modal structure of the ȚȖȚ waveguide,
and focused only on the main mode of the system. As we will show in the next chapter,
there are other modes, which will be of particular importance when analyzing networks
of ȚȖȚ waveguides.
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Chapter 3

Metal–Insulator–Metal Modes

3.1 Introduction¹

WȎȣȒȔȢȖȑȒȠ ȕȎȣȒ șȜțȔ been used to controllably direct energy flow between dif-
ferent points in space. Understanding the way waves propagate in waveguides

led to a multitude of creative designs—all the way from the pipe organ to light switches
used in fiber optic communications. In optics, recently there has been a growing inter-
est in making use of the dielectric properties of metals to guide electromagnetic energy
by using sub-wavelength sized designs that work in the infrared and the visible bands
of the spectrum. One of the motivations for doing photonic research using metals is
to find the means to integrate electronic devices with sizes of tens of nanometers with
the relatively much larger optical components—so that some of the electrons used in
the communication channels between electrical circuitry can be replaced by photons
for faster and cooler operation [10].

Whereas the use of metals for directing electromagnetic energy is relatively new in
optics, sub-wavelength guiding of light bymetals is the norm in themicrowave domain.
Even though the permittivity ofmetals can be large inmagnitude at bothmicrowave and
optical frequencies, the characteristics of the permittivity are quite different in the two
frequency regimes.

In the microwave regime, electrons go through multiple collisions with the ions of

¹This chapter is taken from [11]. Copyright 2009 by the American Physical Society.

23
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the lattice during an electromagnetic cycle according to the phenomenological Drude
model of electrons. Therefore, the electron movement is a drift motion where the veloc-
ity of electrons is proportional to the applied field strength [18, Ch. 1]. As a result, the
induced dipole moment density and hence the permittivity is a large, negative² imag-
inary number. On the other hand, at optical frequencies below the plasma oscillation
frequency, electrons go through a negligible number of collisions during an electro-
magnetic cycle and this time acceleration of electrons is proportional to the applied field
strength which then results in a permittivity that can be substantially a large real nega-
tive number. Above the plasma frequency, the induced dipole moment density is very
low and the permittivity is predominantly a positive real number less than one [14, Ch.
9].

The dielectric slab and the parallel plate (i.e. consisting of two parallel perfectly con-
ductingmetal plates) waveguides are the two canonical examples of waveguiding theory.
If we have a layeredmetal-insulator-metal (ȚȖȚ) geometry, it is possible to smoothly tran-
sition from the dielectric slab to the parallel plate waveguide by reducing the frequency
of operation, and therefore varying the metallic permittivity єm.

At frequencies above the plasma frequency, the metal has a permittivity єm < 1
whereas the insulator has єi ≥ 1. We illustrate the geometry in the inset of Figure 3.1.

The physical modes that the dielectric slab waveguide supports fall into two sets:
guided modes and radiation modes [19, Ch. 1]. Guided modes consist of a countable,
finite set, i.e. there is only a finite number of discrete guided modes. Radiation modes
consist of a non-countable, infinite set, i.e. they form a continuum. The combination
of these two sets of modes form a complete and orthogonal basis set.

Now suppose that we change our operation frequency to one which is very close to
the ȑȐ limit where єm is an arbitrarily large, negative, imaginary number. In this limit,
we can approximate the metal as a perfect electric conductor (ȝȒȐ) where ∣єm∣ →∞. Such
an approximation then gives us the parallel plate waveguide of the microwave domain.
Unlike the dielectric slab, the parallel plate geometry is bounded in the transverse di-
mension—fields are not allowed to penetrate into the ȝȒȐ. There are infinitely many

²Here, we are assuming that the fields are time harmonic with exp(+iωt) time dependence. For
exp(−iωt) time dependence, we get a positive imaginary value for the permittivity.
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discrete modes of the parallel plate, all of which have sinusoidal shapes, and there are
no continuum modes. The collection of the infinitely many discrete modes forms a
complete orthogonal basis set.

In this chapter we will investigate the modal structure of the two dimensional ȚȖȚ
waveguide in the infrared regime where єm is primarily a large, negative real number.
The geometry of the ȚȖȚ waveguide is exactly the same as the one in the inset of Figure
3.1. The only difference between the parallel plate, ȚȖȚ and the dielectric slab wave-
guides is in the numerical value of єm, which depends on the frequency of operation.

There have been numerous studies of theȚȖȚwaveguide in the literature [17,20–36].
The fact that light can be guided within a deep subwavelength volume over a very wide
range of wavelengths is one of the primary reasons why the ȚȖȚ geometry has attracted
so much attention. The full set of modes that the ȚȖȚ waveguide supports—real and
complex discrete modes as well as a continuous set of modes—has only very recently
been published [36]. For other geometries, it has been shown that, in general, wave-
guides support real, complex and continuous sets of modes [37–41]. In this work, we
will provide the detailed mathematical framework to analyze the modal structure of the
ȚȖȚ waveguide and emphasize how it is a hybrid between the parallel plate and the
dielectric slab waveguides.

Operator theory will be the basis of the mathematical tool set with which we will
analyze ȚȖȚ waveguides. In Section 3.2, we will introduce the notation and make some
definitions pertaining to the operators in infinite dimensional spaces. In Section 3.3
we will derive the discrete and continuum modes supported by the ȚȖȚ waveguide
and show that the underlying operators are pseudo-Hermitian. In Section 3.4 we will
demonstrate that the modes we report form a complete basis set via example calcula-
tions using themode-matching technique. In Section 3.5 we will discuss our results and
underline some of the relevant developments in mathematics from both quantum me-
chanics and microwave theory with the hope of expanding our tools of analysis. Lastly,
in Section 3.6 we will draw our conclusions.
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Figure 3.1 – The change in the metallic permittivity (єm) as the frequency of operation (ω) is var-
ied leads to an evolution from the parallel plate waveguide at low frequencies to the dielectric slab
waveguide at high frequencies for the two dimensional metal-insulator-metal geometry. We are as-
suming that єm is a Drude model metal where τ is the average time between collisions among the
ions of the lattice and the free electrons, ωp is the plasma oscillation frequency.

3.2 Some Definitions

Throughout the chapter, we will be using nomenclature from operator theory. In this
section, we will define the terminology and introduce the notation which will be used
in the following sections.³ The reader well versed in operator theory can directly skip
to the next section.

A linear vector space is a space which is closed under the operations of addition and
of multiplication by a scalar. We will call the elements of the space vectors. Spaces need
not be finite dimensional—infinite dimensional vector spaces are also possible. For
instance, the collection of all square integrable functions f (x) defined on an interval
a < x < b forms an infinite dimensional vector space.

The inner product is a scalar valued function of two vectors f and , written ⟨ f ∣⟩
with the following properties

⟨ f ∣⟩ = ⟨∣ f ⟩∗

⟨α1 f + α2∣h⟩ = α∗1 ⟨ f ∣h⟩ + α∗2 ⟨∣h⟩

⟨ f ∣ f ⟩ > 0 if f ≠ 0.

Here (⋅)∗ denotes complex conjugation, α{1,2} are arbitrary complex numbers and f , ,

³For a more detailed coverage on vector spaces and operators, we refer the reader to [42–46]. We will
use italic letters for scalar variables, bold letters for vector variables, sans-serif letters for operators and
SCRIPT style for linear spaces
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h denote arbitrary members of the linear vector space S.

For the infinite dimensional vector space of square integrable functions one possible
definition of the inner product is

⟨ f ∣⟩ = ∫
b

a
f ∗(x)(x)dx . (3.1)

A linear vector space with an inner product is called an inner product space. In such
spaces the norm of a vector f is defined as

∥ f ∥ =
√
⟨ f ∣ f ⟩. (3.2)

This is also known as the L2 norm, to denote square integrability in the sense of Le-
besgue. By using the norm of a vector space, we can define the distance between its
vectors f and  as d( f , ) = ∥ f − ∥ which is always nonzero if f ≠ . Here, d( f , )
is called the metric—the measure of distance between vectors—of the inner product
space. Suppose that F and G are two subsets of the inner product space S and that F is
also a subset of G, i.e. F ⊂ G ⊂ S. F is said to be dense in G, if for each  ∈ G and ε > 0,
there exists an element f ∈ F where d( f , ) < ε [45, pp. 94–95].

A vector space S is complete if all converging sequences of vectors fn(x) converge
to an element f ∈ S. An inner product space which is complete when using the norm
defined by (3.1)-(3.2) is called a Hilbert space.

An operator L is a mapping that assigns to a vector f in a linear vector space S1

another vector in a different vector space S2 which we denote by L f (most often S1 = S2).
An operator is linear if L(α1 f +α2) = α1L f +α2L for arbitrary scalars α{1,2} and vectors
f , . The domain of an operator L is the set of vectors f for which the mapping L f is
defined. The range of an operator L is the set of vectors  = L f for all possible values of f
in the domain of L. A linear operator is bounded if its domain is the entire linear space S

of vectors f and if there exists a single constant C such that ∥L f ∥ < C∥ f ∥. Otherwise the
operator is unbounded. The differential operator is a classical example of an unbounded
operator [44, pp. 93–94]. L is positive (negative) definite if ⟨ f ∣L f ⟩ > 0 (⟨ f ∣L f ⟩ < 0) for all
possible f . Otherwise, L is indefinite.
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A linear bounded operator L† is said to be the adjoint of L if, for all f and  in S

the condition ⟨∣L f ⟩ = ⟨L†∣ f ⟩ is satisfied. If L = L† then L is said to be self-adjoint. If
the operator L is unbounded, then the equality ⟨∣L f ⟩ = ⟨L†∣ f ⟩ defines a formal self-
adjoint [45, Sec. 3.4.1].

Suppose we have a set of orthonormal vectors { fn} which span the Hilbert spaceH.
Then, we can expand any vector  ∈H as  = ∑n⟨ fn∣⟩ fn. Similarly, any linear bounded
operator L acting on  results in

L = ∑
n
⟨ fn∣⟩L fn =∑

n,m
⟨ fn∣⟩⟨ fm∣L fn⟩ fm

= ∑
m,n

fm⟨ fm∣L fn⟩⟨ fn∣⟩

where we expanded L fn in terms of the basis { fm} to get to the last line. Once we choose
a complete orthonormal basis set, we can describe the action of L on any vector  by
the product of an infinite dimensional matrix with elements ⟨ fm∣L fn⟩ and an infinite
dimensional vector with elements ⟨ fn∣⟩—a generalization of regular matrix multipli-
cation. The infinite dimensional matrix is called the representation of L in { fn}. If the
matrix for L is diagonal, then we call that the spectral representation [42, p. 110].

The spectral representation for an operator L depends on the study of the inverse of
the operator L − λ, which we will denote by (L − λ)−1, for all complex values of λ [42, p.
125]. Let the domain and range of L be denoted by DL and RL. The point (discrete)
spectrum is the set of λ for which (L− λ)−1 does not exist. The continuous spectrum is the
collection of λ for which (L−λ)−1 exists and is defined on a set dense inRL, but for which
it is unbounded. The residual spectrum is the collection of λ for which (L − λ)−1 exists
(it may or may not be bounded), but for which it is not defined on a set dense in RL.
The spectrum of L consists of values of λ which belong to either the point, continuous
or the residual spectrum [44, p. 371], [46, p. 21]. We summarized the taxonomy of the
spectrum in Figure 3.2.
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Figure 3.2 – Classification of the spectrum for an operator in a general space. Point spectrum is
sometimes called the discrete spectrum.

3.3 Spectrum

After having defined the necessary terminology, in this section we will derive the modal
structure (spectrum) of the ȚȖȚ waveguide. We will specifically focus on the even
modes of the waveguide, for which the transverse magnetic (ȡȚ) field component is an
even function of the transverse coordinate, x. The reason why we focus on even modes
is that we will be analyzing the scattering of the main, even mode of the ȚȖȚ wave-
guide—which is also a ȡȚ mode—off of a symmetric junction with a different sized
ȚȖȚ waveguide. Due to the symmetry of the problem at hand, even modes will be suf-
ficient. We could also solve for the case of the odd modes by a similar approach, but
we omit that explicit solution for reasons of space. Evenness of the function is achieved
by putting a fictitious perfect electric conductor (ȝȒȐ) at the x = 0 plane of the waveguide,
which forces the tangential electric field Ez to be an odd function, and the magnetic
field Hy to be an even function of x. In other words, the modes of this fictitious wave-
guide with the ȝȒȐ at x = 0 are mathematically the same as the even modes of the actual
waveguide of interest, and so we will work with this hypothetical waveguide for our
mathematics. The geometry is as shown in Figure 3.3. єm refers to the permittivity of
the metal region and єi of the insulator region. At infrared frequencies, єm is a complex
number with a large, negative real part and a relatively small imaginary part (the sign of
which is determined by the time convention used, being negative for an exp(iωt) time
dependence).
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Figure 3.3 – Geometry for the evenmodes of the ȚȖȚwaveguide. The x = 0 plane contains a fictitious
perfect electric conductor to simplify the problem when dealing only with even ȡȚ modes of the
guide. This fictitious ȚȖȚ waveguide is equivalent to an actual guide with an insulator thickness of
2a. The inset shows the equivalent symmetric junction of two ȚȖȚ waveguides. The dashed line in
the inset is the plane of symmetry, which is where the fictitious ȝȒȐ layer is introduced.

Let us begin with Maxwell’s equations for fields that have an exp(iωt) time depen-
dence.

∇× E(r) = −iωµ(x)H(r)

∇×H(r) = iωє(x)E(r).
(3.3)

The ȚȖȚ waveguide is a two dimensional structure which does not have any variation
in the y direction. Therefore, we can eliminate all the derivatives with respect to y in
Maxwell’s equations. Furthermore, our study will be based on the ȡȚ modes which
only have the Hy, Ex and Ez field components. Also, the uniformity of the waveguide in
the z direction leads to exp(−ikzz) as the space dependence in z by using the separation
of variables technique for differential equations (kz may, however, be a complex num-
ber). After simplifying the curl equations in (3.3), we have the following relationships
between the different field components

iωµ(x)Hy(x) =ikzEx(x) +
d
dx

Ez(x)

ikzHy(x) =iωє(x)Ex(x)
d
dx

Hy(x) =iωє(x)Ez(x).

(3.4)
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Using these equations we get the following differential equation for Hy

(є(x) d
dx

1
є(x)

d
dx
+ ω2µ(x)є(x))Hy = k2zHy (3.5)

and since Ez(0) = 0 by the ȝȒȐ wall at x = 0, the boundary condition for Hy under (3.4)
becomes d

dxHy(x)∣x=0 = 0. The equation (3.5) is in the Sturm-Liouville form [45, Ch. 5].

3.3.1 Point Spectrum

The standard approach [45, Ch. 5] in the calculation of the point spectrum of a Sturm-
Liouville equation as in (3.5) starts with a redefinition of the space to L2

є—the set of all
weighted Lebesgue square-integrable functions such that

∫ ∣ f (x)∣2 1
є(x)

dx <∞

which implies that the boundary condition at infinity should be limx→∞Hy(x) = 0. The
inner-product in L2

є , denoted by ⟨⟨⋅∣⋅⟩⟩є, is then defined as

⟨⟨ f ∣⟩⟩є = ∫ f ∗(x)(x) 1
є(x)

dx . (3.6)

In order to have a definitemetric forL2
є , the inner product should be such that ⟨⟨ f ∣ f ⟩⟩є > 0

for all f ≠ 0 so that the norm of any non-zero vector will be a positive quantity. This in
turn implies that to have a definite metric, є(x) should be a real and positive number
for all x. Within the Hilbert space obtained by our choice of the inner product ⟨⟨⋅∣⋅⟩⟩є,
we can write (3.5) as LHy = k2zHy. The operator

L = є(x) d
dx

1
є(x)

d
dx
+ ω2µ(x)є(x)

is self-adjoint since ⟨⟨ f ∣L⟩⟩є = ⟨⟨L f ∣⟩⟩є for all f and  as long as є(x) ∈ R and є(x) >
0. One can then easily prove that the point spectrum of L is purely real [47, p. 50].
The lossless dielectric slab waveguide, which satisfies all the criteria we mentioned,
therefore has a purely real point spectrum.
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Unfortunately, the arguments above fail for the ȚȖȚ waveguide system since the
condition є(x) > 0 is no longer satisfied [36]. The dielectric constants of metals can have
negative real parts at some frequencies (e.g., in the infrared and visible regions), and
generally also have imaginary components corresponding to loss, especially at optical
frequencies. We will now separately analyze the lossy and the lossless metal cases.

Lossless Case

Since ∣Im(єm)∣ ≪ ∣Re(єm)∣ at infrared frequencies, it is worthwhile investigating the
case of real, negative permittivity, i.e., єm = −∣єm∣. The standard Sturm-Liouville theory
is not applicable in this case, because it requires the weighting function є(x) to have the
same sign over its entire domain of definition [47, p. 50]. However, єi > 0whereas єm < 0
for the ȚȖȚ waveguide, under the approximation of negligible loss. The definition of
the inner-product (3.6) becomes indefinite in this case, since we can have ⟨⟨ f ∣ f ⟩⟩є ≤ 0 for
some f ≠ 0. As a result, we no longer can operate in the Hilbert space. The space of
functions with an indefinite metric is called the Krein space. In contrast to the Hilbert
space case, the spectrum of the self-adjoint operators in Krein spaces is, in general, not
real [48, p. 220]. An early analysis of a real Sturm-Liouville equation with a complex
point spectrum can be found in [49].

To prove that (3.5) accepts complex solutions even when є(x) ∈ R, let us work in the
well defined L2 space with an inner-product as defined in (3.1). Because ⟨⋅∣⋅⟩ is always
definite, we are back in the Hilbert space, but L is no longer self-adjoint in L2. Two
integrations by parts⁴ give L† as

L† = d
dx

1
є(x)

d
dx

є(x) + ω2µ(x)є(x)

with boundary conditions
Hy(x)∣

x→∞
= 0

d
dx

є(x)Hy(x)∣
x=0
= 0.

We see that L† = є−1Lє which makes L by definition pseudo-Hermitian [50, 51]. It has

⁴Examples on how to calculate operator adjoints can be found in [45, pp. 150-154].
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been proved that a pseudo-Hermitian operator does not have a real spectrum if L2
є is

indefinite [50, Th. 3].

Alternatively, we can approach the problem by defining

L′ = d
dx

1
є(x)

d
dx
+ ω2µ(x)

and rewriting (3.5) as

L′Hy =
k2z
є
Hy .

Using (3.1) it can be shown that L′ is self-adjoint in L2 so that

⟨Hy2∣L′Hy1⟩ = ⟨L′Hy2∣Hy1⟩

which leads to the generalized eigenvalue problem for the self-adjoint operators L′ and є−1

as

L′Hy = k2zє−1Hy

where k2z is the eigenvalue. The point spectrum of the self-adjoint generalized eigen-
value problem will be complex only if both L′ and є−1 are indefinite [52, p. 38]. The
indefiniteness of є−1 is trivial because epsilon can be a positive or negative quantity
now. To show that L′ is indefinite, observe that by using the boundary conditions in
integration by parts, one can get

⟨Hy∣L′Hy⟩ = ∫
∞

0

⎛
⎝
ω2µ∣Hy(x)∣2 −

1
є(x)

∣
dHy(x)

dx
∣
2⎞
⎠
dx

which can be positive or negative depending on the choice of Hy(x) ∈ L2. Therefore, L′

is indefinite, and k2z will accept complex values. Note that the classification of the point
spectrum into the real and the complex categories is based on k2z and not kz. Hence,
the set of modes with purely real and negative k2z—which leads to a purely imaginary
kz—are categorized as real modes in this approach.
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Lossy Case

As we mentioned earlier, єm has an imaginary part. As a result, for those cases when
neglecting the imaginary part of єm is not desired, L cannot be made self-adjoint by
a redefinition of the inner-product. Therefore, the point spectrum—the set of k2z for
which (L − k2z) does not have an inverse—will be complex. A general classification of
the spectrum for non-self-adjoint operators is still an open problem [48, p. 301], [53].
Also, completeness of the spectrum is difficult to prove. However, the ȚȖȚwaveguiding
problem can be shown to have a spectrum which forms a complete basis set even when
L is non-self-adjoint [45, Th. 5.3, pp. 333–334].

Mode Shape

The dispersion equation that should be solved in order to find the kz values for the
modes of the ȚȖȚwaveguide is derived by satisfying the continuity of tangential electric
and magnetic fields at material boundaries and applying the boundary conditions as
illustrated in [45, pp. 462–470] and [17,24,27,31,35,36]. We refer the reader to Section 2.4
for the details. The eigenvectors (ψn) and the dispersion equation for the corresponding
eigenvalues (k2z,n) of (3.5) for the even ȡȚ modes of the ȚȖȚ waveguide are

ψn(x) = H0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cosh(κi,nx)
cosh(κi,na)

0 < x < a

e −κm ,n(x−a) a < x <∞
(3.7)

tanh(κi,na) = −
κm,n/єm
κi,n/єi

(3.8)

k2z,n = κ2m,n + ω2µєm = κ2i,n + ω2µєi (3.9)

where Re(κm,n) > 0 so that ψn(x) does not diverge and is integrable. Here n is a discrete
index for the eigenvalues and the eigenfunctions. Note that we have chosen to write
the modal shape in terms of the surface mode formulation of [24, Sec. 3]. Surface
modes are the main propagating modes for the ȚȖȚ waveguide and have hyperbolic
modal shapes. It is equivalently possible to describe the modes in terms of oscillatory
shapes using trigonometric functions [24]—analogous to the modes of the dielectric
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Figure 3.4 – Spectrum of the ȚȖȚ waveguide for єm = −143.497 and 2a = λ/4 where λ = 1550nm is
the wavelength of operation. There are four real modes and an infinite number of complex modes,
all denoted with the ● symbol. The thick line denotes the continuous spectrum. Due to the fact that
єm is real, complex modes come in complex conjugate pairs. Insets show the Hy mode shapes in
the x direction for the discrete spectrum (ȡȚ0 through ȡȚ8) and the continuous spectrum (ȡȚC1 and
ȡȚC2)—solid lines in the insets are the real part of the mode, dashed lines are the imaginary part.
The locations of the drawn continuous modes are shown by the ● symbol. Modes in the continuous
spectrum are purely oscillatory in the x direction. Complex modes have a small decay, which is not
visually apparent in the inset for ȡȚ8. Arrows (↑) denote the position of the modes of a parallel plate
waveguide with a separation of a—equivalent to the limiting case h → 0 in Figure 3.8.

waveguide. Analytical continuation of the modal parameters (κi , κm , kz)makes the two
formulations equivalent.

3.3.2 Continuous Spectrum

In this section, we will mathematically show how a continuous spectrum can exist [35,
36] in the ȚȖȚ waveguide and relate it to the continuous spectrum of the dielectric slab
waveguide. The utility of the continuous spectrumwill be evident in themodematching
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Figure 3.5 – Spectrum of the ȚȖȚwaveguide as a function of d = 2a, Re(kz/k0) and Im(kz/k0)where
k0 = 2π/λ is the free space wave vector. єm = −143.497 is assumed, which corresponds to the real
part of the permittivity of silver at a wavelength of λ = 1550nm. The thick line denotes the limit of
the real spectrum. Spheres denote the point spectrum for the d = 2a = λ/4 case as also shown in
Figure 3.4. It can be seen that only the lowest order mode, ȡȚ0, is propagating for d = λ/4 and the
rest of the modes are highly evanescent.

analysis.

As clearly argued in [54, p. 16], the condition of square integrability of themodes can
be replaced by the weaker condition of finiteness of the modes in their domain of defi-
nition. For the ȚȖȚ waveguide, this would imply a non-zero, yet finite electromagnetic
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field at infinity. These infinite-extent and, therefore, infinite energy, continuummodes
(which can be normalized through the use of the Dirac delta distributions as illustrated
in [55, pp. 134–135], and [56, pp. 141–148]) are integrated to realize any physically possi-
ble finite energy field configuration. In this respect, such an approach is similar to the
well-known Fourier transformmethods, where finite energy functions are expanded in
terms of the infinite energy exponentials.

Constraining fields to be finite, instead of zero, at infinity leads to the following field
profile

ϕν(x) = H0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cosh(κi,νx)
cosh(κi,νa)

0 < x < a

cosh (κm,ν(x − a))
+ ζ sinh (κm,ν(x − a))

a < x <∞
(3.10)

ζ = κi,ν/єi
κm,ν/єm

tanh(κi,νa) (3.11)

k2z,ν = κ2m,ν + ω2µєm = κ2i,ν + ω2µєi (3.12)

which is calculated very similarly to the dielectric slab example in [45, pp. 462–470].
Here ν is a continuous index for different functions in the continuous spectrum. For
finite ϕν, the arguments inside the hyperbolic functions for x > a in (3.10), κm,ν, should
be purely imaginarywhich implies that Re(κ2m,ν) < 0 and Im(κ2m,ν) = 0. These conditions
can be written in terms of kz,ν by using (3.12) as

Re(k2z,ν − ω2µєm) < 0 and Im(k2z,ν − ω2µєm) = 0.

Note that when (3.8) holds true, we have ζ = −1 in (3.11) which makes (3.10) and (3.7)
equivalent.

3.3.3 Residual Spectrum

We saw that (3.5) is a second order differential equation which could also be written
as LHy = k2zHy where L is a differential operator. In [42, p. 200] it is claimed that
differential operators have an empty residual spectrum, but a proof is not provided.



38 ȐȕȎȝȡȒȟ 3. ȚȒȡȎș–ȖțȠȢșȎȡȜȟ–ȚȒȡȎș ȚȜȑȒȠ

In [45, p. 224], the residual spectrum is said not to occur in most of the electromagnetic
applications, and in [45, p. 238] the residual spectrum is said to be empty for typical
differential operators, though it is highlighted that such a fact is not a general result.
For (3.5) we did not find any vectors belonging to the residual spectrum of L.

3.3.4 Orthogonality relationships

Orthogonality and completeness are two very valuable properties ofmodes, whichmake
the mode matching technique, to be discussed in the next section, possible. Orthogo-
nality of the modes for the self-adjoint, and non-self-adjoint cases are usually expressed
using different definitions of the inner product. In this work, we will use the pseudo-
inner product, [⋅∣⋅], defined as [52, p. 42]

[ f ∣] = ∫
∞

0
f (x)(x)dx .

It can be shown that two different eigenfunctions of L, ψ1(x) and ψ2(x), corresponding
to two different eigenvalues k2z,1 and k2z,2 are pseudo-orthogonal with є−1(x)weight [43, p.
330], [52, p. 47].

[є−1ψ1∣ψ2] = 0. (3.13)

From (3.4) it can be seen that є−1ψ1 is proportional to the transverse electric field com-
ponent Ex of the mode. Therefore, the orthogonality condition can also be written as

∫
∞

0
Ex1(x)Hy2(x)dx = ∫A E1(r) ×H2(r) ⋅ dA = 0

which is the well known modal orthogonality condition proved by the Lorentz reci-
procity theorem [57, p. 336], where A denotes the cross section of the waveguide.

One can directly verify (3.13) by integration and using κ2m,1 − κ2m,2 = κ2i,1 − κ2i,2 which
is a result of (3.9). The following orthogonality conditions between the elements of the
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point (ψn) and the continuous (ϕν) spectrum can similarly be proved

[є−1ψn∣ϕν] =0 for all n and ν,

[є−1ϕµ∣ϕν] =0 for ν ≠ µ.

The orthogonality conditions talked about in this section can also be described in
terms of the bi-orthogonal relationships between the eigenfunctions of the operators L

and L† as has been done in [45, Sec. 5.3], and [58]. In [59] four examples which illustrate
how to choose the weight of the inner product definition so as to have orthogonal basis
functions are given.

In the following sections, we will be working with fields at the junction of two dif-
ferent waveguides. For notational abbreviation we will use the following convention

e(i){L,R} = E
{L,R}
x ,i

h(i){L,R} = H
{L,R}
y,i

where {L, R} is used to denote themodes of the left and right side of the junction, which
leads to the following orthogonality condition

[e(i){L,R}∣h
( j)
{L,R}] = δi jΩ{L,R} (3.14)

where δi j is the Kronecker delta function and Ω is the overlap integral of the electric
and magnetic transverse fields.

After the classification and analysis of the ȚȖȚ waveguide modes, we will now vi-
sualize different parts of its spectrum by finding the zeros of the respective dispersion
equations through the use of the argument principle method as explained in Appendix
B. We will use the adjectives in Table 3.1 to further differentiate between the modes.

Leaky modes are not normalizable and are not part of the spectrum. Proper modes
can be normalized by the usual integration and they form the point spectrum. Im-

proper modes can be normalized by using the Dirac delta functions, δ(x). They form
the continuous spectrum. Forward modes have a positive phase velocity, whereas the
backwardmodes have a negative phase velocity. We decide on the sign of Re(kz) based
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Table 3.1 – Adjectives

Signifier Signified
Leaky Re(κm) < 0
Proper Re(κm) > 0
Improper Re(κm) = 0
Forward Re(kz) > 0
Backward Re(kz) < 0

on Im(kz): By definition, all modes are propagating in the +z direction. Therefore, in
the limit z →∞, the fields should go to zero. Such a behavior is possible only if Im(kz)
is negative, since the fields have an exp(−ikzz) dependence. The argument principle
method gives us the κm value for the modes. By using (3.9) we get the k2z value. We then
calculate (k2z)1/2 and choose the root which satisfies Im(kz) < 0. Different definitions of
forward and backward modes—including the ones we use—are analyzed in [60]. The
definition we use for the leaky modes is the same as the one used in [19, Sec. 1.5].

In Figure 3.4 the spectrum of an idealized lossless silver-like ȚȖȚ waveguide is
shown on the plane of κ2m for єm = −143.497 which is the real part of the permittivity of
silver at a wavelength λ of 1550 nm [16, 61]. There are four real modes for 2a = λ/4—
ȡȚ0, ȡȚ2, ȡȚ4, ȡȚ6—indexed according to the number of zero crossings in Hy. There is
also an infinite number of complex modes, which are those with eight and more zero
crossings in the insulator region. These modes have a κm with a positive real part that is
rather small compared to the imaginary part—this can also be deduced from the scale
of the imaginary axis of Figure 3.4. The continuous spectrum is illustrated by the thick
line which corresponds to Re(κ2m) < 0 and Im(κ2m) = 0. This line is also the branch cut
of the square root function that is used to get κm from κ2m.

The field profiles of the modes in the insulator region, as shown in the insets of
Figure 3.4, look quite similar to the field profile of the even modes of a parallel plate
waveguide with a plate separation of 2a. The even modes of a parallel plate waveguide
have κ2i,n = −n2π2/a2. We plotted the corresponding κ2m,n values on Figure 3.4 by using
(3.9). It can be seen that such a description gives a quite good estimate of the location
of the modes on the complex κ2m plane.

κ2m = 0 is the bifurcation point for the point spectrum when єm is purely real. For
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positive κ2m, the point spectrum has real modes, whereas for negative κ2m, the point
spectrum splits into two branches that are complex conjugates of one another. κ2m = 0
corresponds to k2z = єmk20 which then implies kz = −i

√
∣єm∣k0—bounded modes should

have Im(kz) < 0. In Figure 3.5 the point spectrum is visualized as a function of the
insulator thickness d = 2a of the ȚȖȚ waveguide and the real and imaginary parts of kz
for the same єm as in Figure 3.4. The thick line in Figure 3.5 denotes the limit of the
real point spectrumwhich is the bifurcation point of themodes. For Im(kz) < −

√
∣єm∣k0

there are no real modes. The point spectrum for the d = 2a = λ/4 case of Figure 3.4 is
also highlighted with spheres in Figure 3.5. For the sake of clarity, we only drew one
branch of modes after the bifurcation. Due to the scale of the axes in Figure 3.5, the
quite small real part of kz for the complex modes after the bifurcation line is not visibly
discernible, but is numerically there.

In Figure 3.6 the spectrum is plotted this time on the κm plane with the same set
of parameters as used in Figure 3.4. The two branches after the bifurcation form the
forward and backward proper, complex modes. Leaky modes which are not part of the
spectrum, but nevertheless are solutions to (3.8)-(3.9) are also shown. When loss is
introduced to the metal, the spectrum moves on the complex plane as illustrated in
Figure 3.7. Forward, proper, complex modes of Figure 3.6 turn into leaky modes by
migrating into the third quadrant of the complex κm plane.

In Table 3.2 we provide the numerical values of κm/k0, where k0 = 2π/λ, for the
modes in the point spectrum as labeled in Figure 3.4. The upper line in each row is
the value for the єm ∈ R case, the lower line is for the єm ∈ C case. The effect of loss is
greatest on the ȡȚ6 mode.

3.4 Mode-Matching

In this section, we will make use of the spectrum of the ȚȖȚ waveguide to calculate
the scattering at the junction of two guides with different cross sections. We will use
the mode matching technique [62] commonly used in the microwave and the optical
domains [63–66].



42 ȐȕȎȝȡȒȟ 3. ȚȒȡȎș–ȖțȠȢșȎȡȜȟ–ȚȒȡȎș ȚȜȑȒȠ

TM0

TM2

TM4TM6

TM8

TM10'

TM10

TM8

'

10 5 0 5 10

30

20

10

0

10

20

30

Forward
Proper
Real

Backward
Proper
Complex

Forward
Proper
Complex

Forward
Leaky
Real

Re(κm)/k0

Im
(κ

m
)/
k 0

Figure 3.6 – Visualization of the spectrum on the κm plane. All parameters are the same as in Figure
3.4. Proper and leaky modes are shown for forward, ●, and backward, ⊙, modes. The thick line is
the continuous spectrum. The complex modes have a small, yet non-zero, positive real part—which
is what makes them proper modes, unlike the continuous part of the spectrum which is improper.
Thus complex modes and the continuous spectrum do not intersect.

Table 3.2 – κm/k0 values for the modes labeled in Figure 3.4

12.02521374394057 + i 0.0TM0 12.03170325421919 + i 0.39535643587620
11.34454132059978 + i 0.0TM2 11.35226216175467 + i 0.41892103144838
8.98087712606770 + i 0.0TM4 8.99644754875734 + i 0.52888321538511
0.7136870643968289 + i 0.0TM6 2.247924588647662 + i 2.124681976891650
0.00887301858491 + i 10.55951095636977TM8 0.45907739584359 + i 10.56851955358188
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Figure 3.7 – Effects of loss on the spectrum. All parameters are the same as in Figure 3.6 except
єm = −143.497− i9.517. Comparison with Figure 3.6 shows that the forward, proper, complex modes
on the fourth quadrant have moved to the third quadrant and thus became leaky modes.

3.4.1 Birth of the Discretuum

The presence of a continuous spectrum leads to the formation of integral equations
when the mode-matching method is applied [55, Ch. 5]. The integral equation is then
expanded using an orthogonal basis set—not necessarily that of the modes—to solve
the scattering problem.

Another way to approach the scattering problem is to limit the transverse coordi-
nates by a ȝȒȐ wall. This approach has the effect of discretizing the continuum part of
the spectrum [54, pp. 38–41], [48, pp. 204–205]—turning it into a discretuum⁵. To limit
parasitic reflections from the ȝȒȐ walls, absorbing layers can be positioned before the
ȝȒȐ termination [63, Ch. 3]. In [68, Sec. 3.2b], a detailed analysis of how the continu-
ous spectrum appears from a discrete collection can be found. We will use a ȝȒȐ wall to
discretize the continuous spectrum. Also, we will not use any perfectly matched layers
to limit parasitic reflections since the metallic sections with permittivity єm effectively

⁵Here, we borrow the terminology from [67] for our détournement.
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absorb the fields away from the junction.
The geometry is as shown in Figure 3.8. For the left waveguide the dispersion equa-

tion for modes becomes

tanh(κi,na) = −
κm,n/єm
κi,n/єi

tanh(κm,nh) (3.15)

which asymptotes to (3.8) as h →∞. The transverse magnetic field shape is

ψn(x) = H0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cosh(κi,nx)
cosh(κi,na)

0 < x < a
cosh (κm,n(x − a − h))

cosh(κm,nh)
a < x < a + h.

(3.16)

x=0

x

zєm

єi

x=a+h
x=a'+h'

a'

h'

a

h

Figure 3.8 – Geometry for mode matching. x = a + h plane of Figure 3.8 is terminated by a perfect
electric conductor which leads to a discretization of the continuous spectrum.

In Figure 3.9 we show the effects of positioning a ȝȒȐ wall at the top of the lossy ȚȖȚ
waveguide. The point spectrum is almost the same as in the case without a ȝȒȐ wall at
the top. The continuous spectrum is discretized, and shows an anti-crossing behavior
(the repulsion between modes which couple to each other) similar to the one observed
in coupled waveguide systems. One way to understand the anti-crossing is to get rid
of the ȝȒȐ walls by the method of images to come up with an infinite lattice of parallel
ȚȖȚ waveguides each separated from each other by a distance 2(a + h). We observed
that the perturbations to the discretuum decrease as we increase h, as expected from
coupled mode theory. Also, the magnitude of anti-crossing behavior in the discretuum
depends on the distance to the nearest mode in the point spectrum. The closer the
point spectrum gets to the continuous spectrum, the larger the anti-crossing effect is.
We should note that the modes of the ȝȒȐ terminated ȚȖȚ waveguide are equivalent
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Figure 3.9 – Effects of termination of the metal by a ȝȒȐ wall—as in Figure 3.8—on the spectrum.
єm = −143.497 − i9.517, є i = 1.0, 2a = λ/4, h = 2λ, k0 = 2π/λ, λ = 1550nm. The spectrum looks very
similar to Figure 3.7. In order to highlight the discretization of the continuum, we show a zoomed
portion of the κm plane. The complex modes and the discretuum show anti-crossing behavior. We
use two different axes for the real part of κm . The scale on the bottom refers to the complex modes,
⊙, whereas the one on the top refers to the discretuum, ●. The inset shows a portion of the infinite
lattice created by the repeated application of image reflection off of the ȝȒȐ boundaries. Dashed
lines in the inset signify the locations of zero tangential electric field, where a ȝȒȐ termination can
be applied. In separate calculations not shown in this figure, we observe that as h is increased,
the magnitude of the anti-crossing behavior of the continuum decreases as a result of decreased
coupling between adjacent ȚȖȚ waveguides.

to the even modes of a one-dimensional metallic photonic crystal at the center of the
Brillouin zone as described in [36, Sec. 4]. More information on the evolution of the
modes and their dependence on material properties can be found there.

3.4.2 Are the modes complete?

Before we attempt the calculation of the scattering properties of modes at waveguide
junctions, we will first investigate the completeness properties of the set of modes we
have at our disposal—the point and the continuous parts of the spectrum. The way
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we will test completeness is to expand the main mode of an ȚȖȚ waveguide of a given
thickness in terms of the modes of the ȚȖȚ waveguide with a different thickness.

Suppose that we areworkingwith the geometry depicted in Figure 3.8. Let us expand
the kth mode on the right hand side of the junction in terms of the modes on the left as

e(k)R (x) =
L

∑
m=1

Akme
(m)
L (x).

In order to find Akm we test the above equation (i.e. discretize the equation by the use
of integration of both sides by a given function) with h(n)L and use (3.14) to get

Akn =
[e(k)R ∣h

(n)
L ]

Ω(n)L

.

Very similarly, we get the following for the magnetic fields

h(k)R (x) =
L

∑
m=1

[e(m)L ∣h
(k)
R ]

Ω(m)L

h(m)L (x). (3.17)

What is the error in this expansion? We can get a measure of it by writing it as

e(k)R (x) −
L

∑
m=1

[e(k)R ∣h
(m)
L ]

Ω(m)L

e(m)L (x).

Calculating the pseudo-inner product of the above expression with h(k)R and then divid-
ing it by Ω(k)R gives an error estimate as

RRRRRRRRRRRRRRR

1 −
L

∑
m=1

[e(k)R ∣h
(m)
L ] [e

(m)
L ∣h

(k)
R ]

Ω(m)L Ω(k)R

RRRRRRRRRRRRRRR

.

Calculating the error based on the magnetic field expansion results in the same expres-
sion.

In [69–74] the importance of the complex modes has been demonstrated. In Figure
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3.10 we show the importance of the continuous spectrum. As shown in Figure 3.10(a)
without the continuous spectrum, the field expansion converges, but to a field profile
which is not the same as the desired profile of the right junction. On the other hand,
inclusion of the continuous spectrum through the discretization of the continuum by
a ȝȒȐ wall leads to the correct field profile as illustrated in Figure 3.10(b). It can be ob-
served that the expansion based on the point spectrum only quite nicely fits the field pro-
file of the right waveguide in the insulating region of the left waveguide (x/λ < 0.125);
however, in the metal region (x/λ > 0.125) the expansion fails. The point spectrum
of the left waveguide has an exponentially decaying field profile for x/λ > 0.125 which
turns out to be insufficient for the expansion of an arbitrary field profile in the metal.
The continuous spectrum, with its non-decaying field profile, makes field expansion in
the metal region possible.

3.4.3 Field Stitching

Now that we know how to treat the continuous spectrum and are confident that the
collection of the point and the continuous spectrum results in a complete basis set,
we can proceed with the mode-matching formalism. We will begin by assuming that
the pth mode of the left waveguide propagates toward the right, scatters and creates the
following set of fields at the right and left sides of the junction, which by the continuity
of the tangential magnetic and electric fields, are set equal

∞
∑
m=1
(δmp + Rmp) h(m)L (x) =

∞
∑
k=1

Tkph
(k)
R (x) (3.18)

∞
∑
m=1
(δmp − Rmp) e(m)L (x) =

∞
∑
k=1

Tkpe
(k)
R (x). (3.19)

Here Rmp is the reflection coefficient of the mth mode of the left waveguide in response
to an incoming field in the pth mode. Similarly, Tkp is the transmission coefficient of
the kth mode of the right waveguide. Note that we chose Rmp to denote the reflection
coefficient for the transverse magnetic fields, which automatically results in −Rmp as
the reflection coefficient for the transverse electric fields.

In [75], it is shown that the testing of the above equations should be done by the
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Figure 3.10 – Effects of the continuous spectrum on mode expansion. єm = −143.497 − i9.517. The
mainmode of the right waveguide, h(1)R (x), with 2a

′ = λ/20 is expanded in terms of themodes of the
left waveguide, h(m)L (x), with 2a = λ/4. The dashed lines show the magnitude of the magnetic field
profile of the main mode of the right waveguide. The solid line shows the result of the expansion
of (3.17). Shaded regions show the error from the use of a particular expansion, i.e., the difference
between the expansion and the actual right waveguide mode. Due to symmetry, only half of the full
modal profile is plotted. (a) Openwaveguide of Figure 3.3, expansionmade using the point spectrum
only. (b) ȝȒȐ terminated ȚȖȚ waveguide of Figure 3.8, with a+h = a′+h′ = λ, expansionmade using
the discretuum and the point spectrum.

magnetic field of the larger waveguide for enforcing electric field continuity (3.19) and
by the electric field of the smaller waveguide to enforce the magnetic field continuity
(3.18). Although that analysis was specifically done for waveguides with perfect metals
(∣єm∣ → ∞), we still use that strategy so that the formulation limits to the correct one
should the metals be made perfect.
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For those cases where a < a′, we will take the pseudo-inner product of (3.18) with
e(n)L and of (3.19) with h(n)R . Furthermore, assuming there are L modes on the left and
R modes on the right, we get

L

∑
m=1
(δmp + Rmp)Ω(m)L δmn =

R

∑
k=1

Tkp [e(n)L ∣h
(k)
R ]

L

∑
m=1
(δmp − Rmp) [e(m)L ∣h

(n)
R ] =

R

∑
k=1

TkpΩ
(k)
R δkn

with the help of (3.14). When a > a′ by using e(n)R and h(n)L to test (3.18) and (3.19)
respectively, we arrive at the following set of equations

L

∑
m=1
(δmp + Rmp) [e(n)R ∣h

(m)
L ] =

R

∑
k=1

TkpΩ
(k)
R δkn

L

∑
m=1
(δmp − Rmp)Ω(m)L δmn =

R

∑
k=1

Tkp [e(k)R ∣h
(n)
L ] .

These are linear matrix equations with Rmp and Tkp as the unknowns. After calculat-
ing the inner products, the set of equations can be inverted to give the reflection and
transmission coefficients for the modes.

In Figure 3.11, we compare the mode-matching method with the finite-difference fre-
quency-domain (ȓȑȓȑ) technique [76]. In [12] scattering at ȚȖȚ junctions was investi-
gated using ȓȑȓȑ. It takes relatively few modes for the mode-matching calculations to
converge. Without the continuous spectrum, the mode matching results converge to
the wrong result. Inclusion of the continuous spectrum decreases the error to around
2%, which is probably due to the space discretization of ȓȑȓȑ simulations as well as
the method used in the de-embedding of the scattering coefficients from fields. As is
also evident from Figure 3.11 the utility of the single mode (L = R = 1)mode-matching
calculations increases as the dimensions of the waveguides decrease. The single mode
approximation is closely related to the simplified impedance model investigated in [12]
where it was shown that for deep subwavelength structures impedance models are a
good approximation. In Figure 3.11 we also show the effect of neglecting the backward
modes in the mode-matching calculations for the 2a = 0.1λ case. Backward modes
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Figure 3.11 – Convergence study of the reflection coefficient, RL
11, of the main mode of the left wave-

guide traveling toward the right waveguide for 2a = 0.9λ, 2a = 0.5λ and 2a = 0.1λ. a′/a = 0.4 and
єm = −143.497 − i9.517 for all cases. Dashed lines are for calculations including the point spectrum
only. Solid lines are those with both the point and the continuous spectrum. Empty circles denote
the calculations done with the forward point spectrum and the continuous spectrum for the 2a = 0.1λ
case only. Error is defined as ∣(RL ,ȚȚ

11 − RL ,ȓȑȓȑ
11 )/RL ,ȓȑȓȑ

11 ∣ where ȚȚ stands for mode-matching and
ȓȑȓȑ for finite-difference frequency-domain calculations. The inset shows the junction geometry.

are important in this sub-wavelength geometry; however, for the wider geometries of
the 2a = 0.5λ and 2a = 0.9λ cases we did not observe any increase in the error when
backward modes were neglected in the mode-matching calculations.

Analysis of the convergence of the field expansions on both sides of a junction is an
important criterion for assessing the validity of the mode-matching technique [77–80].
In Figure 3.12 we show themagnetic field profile at the junction of two ȚȖȚwaveguides.
As is evident from the figure, convergence of the fields on both sides of the junction is
obtained only when the continuous spectrum is also taken into consideration. Other-
wise, the fields just on the left and just on the right of the junction do not agree with
one another, showing one or both calculations to be in error. The clear conclusion from
this numerical illustration is that the point spectrum on its own is not sufficient to de-
scribe the behavior of the waveguide junctions. Inclusion of the continuous spectrum
is essential.

In Figure 3.13 we visualize the scattering coefficient of the main mode of the ȚȖȚ
waveguide. We do the calculations in two different ways, one using ȓȑȓȑ, and the
other using themode-matching technique with the point and the continuous spectrum.
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Figure 3.12 – Magnetic field Hy at the junction of two ȚȖȚ waveguides as a result of the scattering of
themainmode of the left waveguide traveling toward the right—the inset shows the schematic of the
geometry. The left waveguide has 2a = 0.9λ, the right waveguide has 2a′ = 0.36λ so that a′/a = 0.4 as
in Figure 3.11. a + h = a′ + h′ = 3λ/4. Fields on the left of the junction are dashed, fields on the right
are shown with solid lines for both the real and the imaginary part of the magnetic field profile. The
difference between the left and right fields is shaded. Due to symmetry, only half of the field profile
is plotted. Vertical dotted lines at x = 0.18λ and x = 0.45λ denote the end of the insulator region
for the right and the left side of the junction respectively. (a) Mode-matching calculations using
the point and the continuous spectrum—60modes in total—showing good agreement between the
fields just on the left and just on the right of the junction. (b) Mode-matching calculations using
the point spectrum only—100 modes in total—showing clear disagreement between the calculated
fields just on the left and just on the right of the junction.

When applying mode-matching, we use the a > a′ formulation for RL
11 calculations and

the a < a′ one for RR
11. There is a very good match between the results of the two tech-

niques, verifying the applicability of the mode-matching method.
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Figure 3.13 – Reflection coefficient of the mainmode at the junction between two ȚȖȚ waveguides of
different insulator thicknesses, plotted on the complex plane within the unit circle. Both waveguides
have єm = −143.497 − i9.517 and є i = 1.0. Filled circles, ●, are ȓȑȓȑ results, empty circles, ○, are
mode-matching results. The left waveguide thickness is fixed at 2a = 0.9λ. The right waveguide
thickness varies from 2a′ = {0.02λ, 0.04λ, . . . , 0.9λ}. The origin is the zero reflection point that
corresponds to a = a′. As a′ decreases progressively toward zero, we move progressively along the
curves away from the origin. The first set of curves, RL

11, are for the case when the mode of the left
waveguide, traveling from left to right, is scattered by the junction. The second set of curves, RR

11, are
for the case when the main mode of the right waveguide, traveling from right to left, is scattered by
the junction. Insets illustrate the respective cases. Details about the ȓȑȓȑ calculations can be found
in [12].

3.5 Discussion

Wewill begin this section by a comparative study of themodal structures for the parallel
plate, the dielectric slab and the ȚȖȚwaveguides. Our aimwill be to frame the ȚȖȚ case
as a bridge between the dielectric slab and the parallel plate waveguides.

The 2ȑ symmetric dielectric slab waveguide—where the cladding and the core are
composed of lossless, positive permittivities—has no proper complex modes [57, p. 718]
as expected from the regular Sturm-Liouville theory. The dispersion equation for the
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dielectric slab waveguide—which is the same as (3.8)—does have complex roots. How-
ever, all of those complex roots correspond to leaky modes that are not a part of the
spectrum.

The point spectrum of the dielectric slab consists of real propagating modes with
pure exponential decay in the cladding region and with positive power flux in the direc-
tion of propagation, z. The number of modes in the point spectrum is a finite quantity.
The cutoff condition for the point spectrum is obtained by the equality κ2m = 0. The
continuous spectrum of the dielectric slab starts just below the cutoff condition for the
point spectrum where κ2m < 0. In this range, the modes extend to infinity in the trans-
verse direction, but they remain bounded. We can divide the continuous spectrum into
two sections based on the sign⁶ of k2z = κ2m + ω2µ0єm = κ2m + ω2µ0∣єm∣. The section where
k2z > 0 is called the radiative part whereas the section k2z < 0 is called the reactive part of
the continuous spectrum [55, pp. 128–132], [19, pp. 19–28]. For both the radiative and
the reactive parts of the continuous spectrum, the transverse field profiles of the modes
are sinusoidal standing wave patterns. As the sinusoidal variation in the transverse di-
rection (κm = i∣κm∣) becomes more rapid, the sinusoidal variation in the propagation
direction (kz) decreases. The jump from the radiative to the reactive part occurs when
the sinusoidal variation in z goes to zero: kz = 0, κm/k0 = i

√
∣єm∣. In the reactive part,

the variation in x is so rapid that, modes decay as they propagate in z. The radiative
part is often visualized in the mind’s eye by plane waves that originate in the cladding
region far away from the core, propagate at an angle towards the core, reflect off of the
core and propagate away from it. The interference pattern between the incoming and
the outgoing plane waves leads to a standing wave pattern in the transverse direction
and a propagating plane wave in the positive z direction. The reactive part is harder
to think about in terms of plane wave propagation since in this part of the continuous
spectrum kz is purely imaginary and, therefore, the modes are decaying in the positive
z direction. The plane wave picture is often extended to the reactive range by allowing
for the possibility for the plane waves to come at an ‘imaginary’ angle of incidence.

The spectrum of the parallel-plate waveguide with ȝȒȐ boundaries is less nuanced

⁶Here, we are assuming that we are operating at a frequency well above the plasma frequency, ωp,
where єm = ∣єm ∣ < 1 so that the ȚȖȚ geometry describes a conventional dielectric slab waveguide as
illustrated in the introduction section.
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than that of the dielectric slab case. There is no continuous part of the spectrum. All
modes belong to the point spectrum and form a discrete basis set. There are infinitely
many discrete modes supported by the parallel-plate waveguide. Finitely many of them
are propagatingmodes and carry a positive energy flux in the z direction. The remaining
ones do not carry any energy and are called evanescent.

The spectrum of the ȚȖȚwaveguide is a hybrid of the dielectric slab and the parallel-
plate waveguides’ spectra. The ȚȖȚ waveguide has both the point and the continuous
spectra. Let us start with the continuous spectrum first.

In Section ȖȖȖ we have shown that the continuous spectrum of the lossless ȚȖȚwave-
guide exists for all k2z < ω2µєm which is equivalent to k2z < −ω2µ∣єm∣ since єm is a large
negative number for the ȚȖȚ case. We see that the continuous spectrum of the ȚȖȚ
waveguide is purely reactive and can be thought of as composed of plane waves com-
ing at an imaginary angle through the metal and reflecting off of the insulator region.
Equivalently, at a more fundamental level, they are the solutions of the wave equation
with the condition that the fields be finite and non-zero at infinity.

The point spectrum of the ȚȖȚ waveguide has infinitely many members, similar to
the parallel-plate case. Indeed, one can think of the point spectra of the ȚȖȚ and the
parallel-plate waveguides as analytical continuations of each other as illustrated in [22]
for the main ȡȚ0 mode of the ȚȖȚ and the ȡȒȚ mode of the parallel-plate waveguides.
Consequently, the main ȡȚ0 mode of the ȚȖȚ waveguide can be thought of as the sym-
metrical coupling of the two surface plasmon modes at the top and the bottom metal-
insulator interfaces [81].

There are no evanescent discrete modes in the dielectric slab waveguide, but the
ȚȖȚ waveguide supports them. As illustrated in Figure 3.5 there are infinitely many
discrete modes for any given insulator thickness. Finitely many of those are real modes
(k2z ∈ R), the remaining ones are complex (k2z ∈ C). Of the real modes, only those with
kz ∈ R carry any power flux. These observations are strictly true only for the case єm ∈ R.
When there is loss in the system, all modes do carry small, yet finite, amount of power.
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We have verified these claims by calculating the power flux as

P =1
2
Re( ∫ Ex(x)H∗y(x)dx)

=1
2
∣H2

0 ∣ ×Re
⎧⎪⎪⎨⎪⎪⎩

kz
ωєm

1
Re(κm)

+ kz
ωєi

sinh(κiRd)/κiR + sin(κiId)/κiI
cosh(κiRd) + cos(κiId)

⎫⎪⎪⎬⎪⎪⎭

using (3.4), (3.7) and κi = κiR + iκiI for different modes in the point spectrum. For wave-
guide junctions, it has been argued that neglecting complex mode pairs on either side
of a waveguide junction leads to a discontinuity in the reactive energy stored at the junc-
tions [72]. A similar argument can also be made for the highly evanescent continuous
modes of theȚȖȚ geometry. Real and complex boundmodes are exponentially decaying
in the metal region. At the junction between two ȚȖȚ waveguides, the smaller wave-
guide’s discrete bound modes cannot account for the field leakage into—and therefore
reactive energy storage in—the metal region due their exponential decay. The contin-
uous modes which extend infinitely into the metal region make it possible to account
for the leakage into metal regions.

We have shown the necessity to take into account the full modal structure of the ȚȖȚ
waveguide by the calculations we presented in Section Ȗȣ. Here, we should note that,
whenwe didmode-matching calculations for the losslessȚȖȚgeometry, we occasionally
observed convergence problems while we were trying to reproduce the ȓȑȓȑ results.
However, when we included loss, all our calculations converged and we did reproduce
the lossy ȓȑȓȑ results as we have illustrated in Figure 3.13. The matrix that one needs
to invert to solve the mode-matching equations has a higher condition number in the
lossless case compared to the lossy one. That may explain the difficulties we faced.

In the remainder of this section, we will draw some connections between optics and
other branches of science with the hope of expanding the analogical toolset we use for
analysis—as exemplified in [82].

The one dimensional Schrödinger equation and the electromagnetic wave equations
in layered media are closely related. Both are in the Sturm-Liouville form and one can
map the dispersion equation for the ȡȒ mode of a dielectric slab waveguide to the dis-
persion equation for the modes of a finite potential well [83, p. 11]. Furthermore, if one
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allows for the finite potential well to have different effective masses in the well and the
barrier regions, then a mapping to the ȡȚmode dispersion equation (3.8) also becomes
possible. In [84–86] exact closed form analytical solutions for the modes of a single,
finite quantum well are developed. These solutions can be mapped to the transverse
electricmodes of the ȚȖȚ or the dielectric slab waveguides and perhaps with some labor
could be expanded to the ȡȚ case as well. Effects of discontinuities in quantum well po-
tentials are shown to lead to changes in the reflection spectrum of the wells in [87]. It is
intriguing to ask whether such studies could be useful in optics for the investigation of
the effects of material interfaces. Recently, it was shown that non-hermitian potentials
in the Schrödinger equation can have purely real spectra due to the certain symme-
tries of the Hamiltonian of the system [88]. Pseudo-hermiticity, which we have touched
upon in Section ȖȖȖ, has been shown to play an important role in the interpretation of
these systems [89]. In [90] a parallel plate waveguide with impedance boundary condi-
tions was analyzed by the help of the definition of an inner product which reveals some
hidden symmetries [91,92] of the system. The operator theoretic findings summarized
in [88] can have implications for the analysis of waveguides.

Lastly, in the microwave literature, the unique definition—if there is any—of the
impedance of an arbitrary waveguide mode is an active area of research. The causal
waveguide impedance definition of [93] seems to formulate a unifying framework to
merge different interpretations together. It seemsworthwhile to ask what the ȡȚ0mode
impedance of anȚȖȚwaveguidewould be for a causal definition of the impedance given
the Kramers-Kronig relationships for waveguide modes as investigated in [94].

3.6 Conclusion

In this chapter we investigated the even ȡȚmodes that theȚȖȚwaveguide supports. We
based our analysis in the language of operators and usedmethods developed for Sturm-
Liouville systems to expand the results reported in [36]. The mathematical structure of
the oddmodes are very similar to the even ones and can be derived in a similar manner.
These findings were in accordance with [39] where it was shown that in general, open
structures will have complex and continuous spectra.
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After the investigation of the modes, we showed their utility and relevance by the
mode-matching method. We investigated the problem of modal scattering at the sym-
metric junction of two ȚȖȚ waveguides with different cross sections [12] and success-
fully applied the mode-matching technique to predict the modal reflection coefficients
calculated by full-field simulations. Lastly, we commented on some of the possible links
between the quantummechanics, optics and microwave literature and considered pos-
sible research directions.

The knowledge of the set of orthogonal modes which form a complete basis for a
given geometry leads to a much more simplified algebra and speeds up calculations.
The results of this paper are valuable for electromagnetic scattering calculations involv-
ing the ȚȖȚ geometry. Our results would also help in the analysis of optics experiments
involving ȚȖȚ waveguides [95–97]. Furthermore, the results reported are also useful
for analyzing plasmonic quantum optics [98–101] and Casimir effect devices [102,103].

The analysis made in this chapter can be generalized for other related geometries
involving metals at optical frequencies [104–107]. The rich set of modes available in the
ȚȖȚ geometry suggests that modal investigation of arbitrary three-dimensional nano-
metallic waveguides—which are thought to replace the electrical interconnects on fu-
ture computing devices—will require novel means of deducing their discrete and con-
tinuous spectra.
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Chapter 4

Circuit Theory for ƨƤƨ Waveguides

4.1 Introduction¹

MȜȑȒșȖțȔ ȒșȒȐȡȟȜȚȎȔțȒȡȖȐ ȤȎȣȒ propagation using transmission lines has been
one of the most important achievements of microwave network theory [108].

The concept of impedance [109] and understanding the effects of waveguide disconti-
nuities in terms of lumped circuit elements were crucial in this respect.

Recent interest in the use ofmetals to design optical components opened up the pos-
sibility of guiding light in sub-wavelength structures. The optical properties of metals
at infrared and visible wavelengths enable these designs. It is hoped that the size mis-
match between modern electronic components with critical dimensions on the order
of tens of nanometers and the micrometer scaled optical devices will be bridged by the
use of nano-metallic structures [10]. Even though the properties of metals are quite dif-
ferent at optical wavelengths compared to the microwave, designs that are qualitatively
similar to their low frequency counterparts have been demonstrated at optical frequen-
cies [110]. It is intriguing to ask whether methods from microwaves can be applied to
this new generation of nano-metallic structures to come up with concise descriptions of
components that can lead to a simplified approach to the design of functional systems
composed of many interacting parts.

Transmission lines and lumped element circuit descriptions have been shown to be

¹This chapter is taken from [12]. Copyright 2008 by ȖȒȒȒ.
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useful concepts for optical components [76, 111–115]. In this chapter we will focus on
the two dimensional metal-insulator-metal (ȚȖȚ) waveguide (here we will use this term
“ȚȖȚ” to apply only to waveguides at optical or infrared frequencies, as distinct from
“parallel plate” waveguides, which are mechanically similar structures but used in the
microwave or radio-frequency regime). ȚȖȚ waveguides have been extensively studied
[17, 27, 116] in the literature. It has also been shown that the main transverse magnetic

(ȡȚ) mode of an ȚȖȚ waveguide continuously changes to that of the transverse electro-
magnetic (ȡȒȚ) mode of a parallel-plate waveguide with perfect electric conductor (ȝȒȐ)
boundaries as the frequency of operation is decreased [22]. Our work will investigate
the symmetric junctions of ȚȖȚ waveguides. It is possible to find examples of analysis
for various junction geometries including ȚȖȚ waveguide to free space [30], one ȚȖȚ
waveguide to two ȚȖȚ waveguides [117], ȚȖȚ waveguide bends [76, 118], dielectric slab
waveguide to ȚȖȚ waveguide [119], ȝȒȐ parallel plate waveguide to ȝȒȐ parallel plate
waveguide [120], surface plasmon to surface plasmon [66, 121], and ȚȖȚ waveguide to
ȚȖȚ waveguide [122]. In [123] junctions made by micro gratings on metallic wires are
modeled as Brag mirrors. [124] reviews the numerical methods of analysis for nano-
metallic structures.

In this chapter, in Section 4.2, we will characterize the modal reflection and trans-
mission from ȚȖȚ junctions using the scattering matrix approach, a commonly used
method in microwave network theory. Then, in Section 4.3, to test our characteriza-
tion we will design a cascade connection of ȚȖȚ junctions to couple the mode of a
wavelength sized ȚȖȚ waveguide to that of a sub-wavelength one with zero reflection.
Lastly, in Section 4.4, we will represent the scattering matrix of ȚȖȚ junctions in terms
of an equivalent lumped circuit model and discuss the physical significance of its ele-
ments. Throughout our analysis, we will compare ȚȖȚ waveguides to ȝȒȐ parallel plate
waveguides and comment on the similarities and the differences between the two. We
will draw our conclusions in Section 4.5.
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4.2 Scattering Matrix Description of Junctions

In this section wewill focus on the geometry as shown in Figure 4.1. We are considering
ȚȖȚ waveguides, consisting of two layers of metal separated by an insulating dielectric
layer. Themetals are presumed to be thick in the vertical (x) direction in Figure 4.1, and
to extend arbitrarily far in the directions in and out of the page. We are considering the
modes of propagation in the horizontal (z) directions. We are particularly interested in
what happens at the symmetric interfaces between two (or more) such ȚȖȚ waveguides
with different dielectric thicknesses. Figure 4.1 shows the interface between two such
guides. b will denote the insulator thickness for the left waveguide and b′ will be used
for right waveguide’s insulator thickness. We will assume that the insulating region
is free space with a permittivity єi = 1. For our simulations, the metal is silver with a
permittivity of єm = −143.497−i9.517 [16,61], though similar general results are expected
for othermetals such as aluminum or gold. Wewill use e +iωt for the time dependence of
electromagnetic fields where ω is the angular frequency. The wavelength of operation
is fixed at λ = 1550nm, in the L band of optical telecommunications. The main mode
of the system is an even ȡȚ mode (here by ȡȚ we mean that the magnetic field, Hy, is
in the direction out of the plane of the paper in Figure 4.1). Due to the symmetry of the
junction only even ȡȚ modes can be excited using an incident wave that is itself a ȡȚ
wave that is an even function with respect to the center of the guide. We therefore have
only three field components: Hy, Ex and Ez.

Using the dispersion equation for even modes of the ȚȖȚ waveguide [116] it can be
shown that only a single even propagating mode can exist for b < 0.97λ for our choice
of єm, єi and λ. The condition for the ȝȒȐ parallel plate waveguide is similar, where only
a single even propagation mode exists for b < 1.0λ. When there is only one propagating
mode, far away from the waveguide junction the fields can be written in terms of that
main mode of the system since all higher order modes will have an exponential decay
much faster compared to the main propagating mode. Under such circumstances, the
effects of the waveguide junction on the propagating modes can be described using the
single mode scattering matrix (S) formalism [125]. In the terminology of the scattering
matrix, the forward and backward mode amplitudes are considered to scatter from one
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Figure 4.1 – Description of the modeling geometry. Dashed lines represent the location of the left
and right ports of the overall scattering matrix S that describes this junction (schematically shown
in the bottom part of the figure). Gray areas on the left and right of the ports are the regions in the
simulation space used to extract the reflection coefficients S11 and S22.

“port” to another. Here we can think of the ports as being the left and right port planes
shown in Figure 4.1. These ports are sufficiently far to the left and right of the junction
that the fields have settled down again to being the propagating modes of the guides
(nearer to the interface, there will in general be other field behavior, including various
near-field components that decay rapidly with distance).

If we can deduce the scattering matrix for such a junction, then we can have a very
simple way of modeling the behavior of structures containing such junctions, as is al-
ready well known in the modeling of microwave guides. The elements of the scattering
matrix, S11, S12, S21, S22, are complex numbers which describe the phase and magni-
tude of the reflection and transmission of the main modes. Thus, in general there are 8
independent real numbers in S. However, under certain conditions the number of inde-
pendent parameters can be reduced. First of all, if the system is composed of reciprocal
media (i.e. symmetric permittivity and permeability tensors) then using the Lorentz
reciprocity theorem it can be shown that S12 = S21. Note that this equality implies a
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certain normalization of the modes [125, eq. (5.11) and (5.40)], specifically

∫∮A
EL ×HL ⋅ dA = ∫∮A

ER ×HR ⋅ dA = 1 (4.1)

where E{L,R} and H{L,R} denote the electric (E) and magnetic (H) components of the
main propagating modes on the left (L) and the right (R) of the waveguide junction.
A is the cross section of the waveguides perpendicular to the direction of propagation.
Also note that for lossless systems S is a unitary matrix [125] (though in general in this
chapter we will be considering systems with loss). As a result, using reciprocity it is
possible to describe a lossy junction using six real numbers, two for each of S11, S12,
and S22. When there is no loss we only need three real numbers due to the unitarity of
S.

S11

S22

(a) (b)

(c) (d)

1 1

R
11

Figure 4.2 – Description of the steps taken in extracting S from fields. (a) Calibration simulations
with uniform insulator widths of b and b′, which give the wave vector k and the values of the in-
coming fields at the left, H+LΨL(x), and right ports, H+RΨR(x). (b) Field impinging from the left
side, which leads to S11. (c) Field impinging from the right side, which leads to S22. (d) Simulation
domain is terminated by a perfect electric conductor at the right input port plane. S12 is extracted
from the reflection coefficient R using the previously calculated S11 and S22.

The scattering matrix description based on the propagation of the modes can be
mapped to an equivalent transmission line with propagating voltage and current waves.
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Figure 4.3 – Polar plot of S11 (●, plots heading out to the right half of the diagram) and S22 (●, plots
heading out towards the left half of the diagram) on the complex plane, which is called the Smith
chart in themicrowave literature. Circles are used for the ȚȖȚ case, dashed lines are used for the ȝȒȐ
case. Each subplot is for a fixed left waveguide thickness b with a varying right waveguide thickness
b′. In all three subplots the origin is the zero reflection point which corresponds to b′ = b. As b′
decreases progressively towards zero, we move progressively along the curves away from the origin.
The end points of the dashed curves on the unit circle correspond to b′ = 0. In all three cases, the
wavelength of light is fixed at λ = 1550nm. (a) b = 0.1λ. (b) b = 0.5λ. (c) b = 0.9λ.

The voltage, V , on the transmission line is defined as proportional to the transverse
electric field of the mode and the current, I, is defined as proportional to the transverse
magnetic field. The first condition on the proportionality factors is that the average
power is given by Re(VI∗/2) as in a circuit. The second condition on the proportion-
ality factors is that V/I of an incident wave on the transmission line should be the
characteristic impedance of the mode [126, p. 532]. We know that no unique definition
of the characteristic impedance can be made for non-ȡȒȚ modes as shown in [127, p.
66] and [128, pp. 226-228]. However, the normalization condition (4.1) on the modes,
which gives us symmetric scatteringmatrices, automatically leads to transmission lines
with characteristic impedance of unity, independent of the modal properties. A discus-
sion and proof of this point is given in [125], [129, pp. 186-188] and [130, p. 171].

After that brief introduction to the theory of scattering matrices, now we will de-
scribe the method we used to extract the elements of S from the electromagnetic fields
in such waveguide junctions. We solved Maxwell’s equations using the finite-difference
frequency-domain (ȓȑȓȑ) method [76]. In the vicinity of the waveguide junction, higher
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order modes will be excited. We initially chose the left and right ports of our junction
sufficiently (5λ) away from the physical junction where the amplitudes of the higher
order modes are negligible. In the following we will formulate S in terms of the trans-
verse magnetic field component Hy. We will use ΨL(x) to denote the main mode of the
left waveguide and ΨR(x) for the right waveguide.

The scattering matrix relates the amplitudes and phases of the modes that arrive
at the left and right ports, H+L , H+R to the the amplitudes and phases of the modes that
propagate away from the ports, H−L and H−R. Formally we can write

⎛
⎝
H−L
H−R

⎞
⎠
=
⎛
⎝
S11 S12
S21 S22

⎞
⎠
⎛
⎝
H+L
H+R

⎞
⎠
. (4.2)

In order to extract S we need to know the fields that arrive at the left and right ports
from our numerical sources in the simulation domain. To do that we do two calibra-
tion simulations (one for the left waveguide, another for the right waveguide) without
any discontinuities, as shown in Figure 4.2(a), and record the fields. This gives us the
required H+{L,R}Ψ{L,R}(x) in addition to the the propagation vectors, k{L,R}, of the two
main modes for guides of insulator thicknesses b and b′ respectively. Then we do two
more simulations where we send the mode from the left and from the right waveguide
to the discontinuity as schematically shown in Figure 4.2(b)-(c). From the results of the
simulation in Figure 4.2(b), for the fields to the left of the left port, HL(x , z), we get

HL(x , z) = [H+L e −ikLz +H−Le +ikLz]ΨL(x)

= [H+L(e −ikLz + S11e +ikLz)]ΨL(x)

where the location of the left port determines the origin for z and in (4.2) we used the
fact that H+R = 0 for the simulation depicted in Figure 4.2(b). Simple algebra gives

S11 =
HL(x , z)
H+LΨL(x)

e −ikLz − e −2ikLz .

Ideally, S11 should be independent of the coordinates x and z. However, due to finite
reflections from the perfectly matched layers (ȝȚș) at the boundaries of our simulation
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domain, we do get some small variations in S11. To mitigate these effects, we extract the
complex valued S11 at various locations in our simulation domain shown with the gray
area on the left of the junction in Figure 4.1, and average the results. Very similarly, we
also extract S22 from the results of the simulation of Figure 4.2(c).

In order to extract S12, we terminate our simulation domain at the plane of the right
port with a perfect electric conductor. Such a termination results in zero tangential elec-
tric fields and therefore gives −1 for the reflection coefficient of the transverse electric
field, Ex , and +1 for the magnetic field, Hy. Thus, at the right port we get H−R = H+R.
Using this equality in (4.2) gives

⎛
⎝
H−L
H−R

⎞
⎠
=
⎛
⎝
S11 S12
S21 S22

⎞
⎠
⎛
⎝
H+L
H−R

⎞
⎠
. (4.3)

We call the reflection coefficient from the junction in Figure 4.2(d), R. We extract R
using the same method as we used in the extraction of S11. From the definition

R =
H−L
H+L

and using (4.3) one gets

R = S11 +
S12S21
1 − S22

= S11 +
S212

1 − S22
(4.4)

where in the last equality we used the fact that S21 = S12. From the knowledge of R, S11
and S22 one can easily invert (4.4) to calculate S12.

After we calculate S for the ports defined in Figure 4.1, we shift both the left and
right reference planes back to the exact location of the junction using

SJ =
⎛
⎝
e ikLℓL 0
0 e ikRℓR

⎞
⎠
S
⎛
⎝
e ikLℓL 0
0 e ikRℓR

⎞
⎠

where ℓL = ℓR = 5λ as defined in Figure 4.1 and SJ is the effective scattering matrix for
the case where the left and right ports are projected back to coincide with the junction
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plane [125]. For the sake of notational abbreviation, from this point on we will use S
to imply SJ . Note that this effective scattering matrix is defined just for the algebraic
convenience of having a scattering matrix associated directly with the position of the
interface. The fields near to the interface are not in fact just describable by these single
main modes because of various near field effects of higher order modes.

We fixed the frequency of operation at λ = 1550nm and calculated S for various right
waveguide thicknesses (b′) while keeping the width of the left waveguide (b) constant.
In Figure 4.3 three sets of results are shown for b = {0.1λ, 0.5λ, 0.9λ}. The outermost
circle in the plots is the unit circle in the complex plane, and the real and imaginary
parts of the reflection coefficients are plotted for different {b, b′} pairs. We also plotted
S11 and S22 as a function of b′ for the ȝȒȐ case using the well known mode-matching
technique [62] for the same set of b. We verified our mode matching approach by ȓȑȓȑ
which gave the same results. The reason we did mode-matching calculations was to
verify the ȝȒȐ parallel plate waveguide results in the literature, as well as to check our
numerical extraction of S in a numerically independent manner. Making the metals
perfect turns the ȚȖȚ waveguide into the ȝȒȐ parallel plate waveguide. It can be seen
that the shapes of curves for the ȝȒȐ parallel plate and ȚȖȚ waveguides are qualitatively
similar. Also note that the polar plot of the reflection coefficients is nothing other than
the Smith chart of the microwave theory [131, p. 48], which we will use in the next
section.

4.3 Cascade Connection of Junctions

Now that we have a methodology to characterize ȚȖȚ junctions, in this section we will
test the utility of the scatteringmatrix description by numerically simulatingmode prop-
agation through a cascade connection of junctions and comparing the results with the
predictions of the scattering matrix formalism. First let us define the building blocks
that will be used throughout the rest of this section.

When different scattering matrices are cascaded, the overall scattering matrix for
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the system is not the product of the individual scattering matrices. For cascade con-
nections, the transfer matrix, T, leads to a much simpler formulation [130, pp. 181-
182]. S has {H+L ,H+R} and {H−L ,H−R} as an input-output pair, whereas T has {H−R,H+R}
and {H+L ,H−L} respectively. Given one representation, one can easily compute the other
through simple algebraic manipulations.

⎛
⎝
H+L
H−L

⎞
⎠
=
⎛
⎝
T11 T12

T21 T22

⎞
⎠
⎛
⎝
H−R
H+R

⎞
⎠

T11 =
1
S21

T12 = −
S22
S21

T21 =
S11
S21

T22 = S12 −
S11S22
S21

. (4.5)

In order to have H−L = 0, one should have T21H−R + T22H+R = 0, which can be cast in
terms of the scattering parameters using (4.5) as

S11H−R = (S11S22 − S12S21)H+R . (4.6)

4.3.1 Conditions for Zero Reflection

Lossy Case

Let us investigate the case when two junctions characterized by two different scattering
matrices, LS and RS, are separated by a center waveguide of length ℓ as shown in Figure
4.4(a). Suppose that we adjust our excitation amplitude such that the mode that propa-
gates toward the right junction at its input plane, which is the junction plane, has unit
strength. That choice of normalization leads to H−C = eikC ℓ and H+C = RS11e−ikC ℓ where
kC is the wave vector of the center waveguide. With these definitions, the condition for
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Figure 4.4 – (a) Schematic diagram of modal propagation. The left and right junctions are shown as
boxes with an Smatrix description. The center waveguide is shown as a transmission line of length
ℓ. The source that creates the fields is normalized such that the mode that propagates to the right
has a unit magnitude at the input of the right junction. (b) Graphical solution of (4.9) and (4.10)
on the complex plane. Point PL is the location of the left junction on the LS22 curve where b = 0.9λ
and b′ = 0.5λ. Point PR is the location of the right junction on the RS11 curve where b = 0.5λ and
b′ = 0.16λ.

zero reflection, (4.6), for the left junction can be written as

LS11H−C = (LS11LS22 − LS12LS21)H+C
LS11eikC ℓ = (LS11LS22 − LS12LS21)RS11e−ikC ℓ

e−2ikC ℓ =
LS11/RS11

LS11LS22 − LS12LS21
.
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Now, let us simplify the above equality. For reciprocal media, S12 = S21, we can write

e−2ikC ℓ =
LS11/RS11

LS11LS22 − LS221
. (4.7)

Lossless Case

If the system is lossless, then the scattering matrix should be unitary (SS† = 1) which
implies the following three conditions

∣S11∣2 = ∣S22∣2 = 1 − ∣S12∣2

S12
S∗21
= −S22

S∗11
.

(4.8)

Using (4.7) and (4.8) after some algebra the zero reflection condition becomes

∣LS22∣ = ∣RS11∣ (magnitude condition) (4.9)

∡LS22 +∡RS11 = 2kCℓ + 2πn (phase condition). (4.10)

where n is any integer value, superscripts R and L denote right and left respectively.
“∡” is used to represent the argument of a complex number. What this means is that,
to match a left waveguide to a right waveguide, one should choose a center waveguide
width which satisfies the magnitude condition, and decide on the length of the center
waveguide based on the phase condition.

As a corollary, suppose that the left and right waveguides are the same and are on
the order of a wavelength in dimension. Further suppose that the center waveguide
has a deep sub-wavelength size, i.e. it has an insulator width much smaller than the
wavelength and the surrounding left and right waveguides’ insulator widths. Due to
the symmetry of the system, the magnitude condition is automatically satisfied. One
only needs to choose a specific length for the center section to do the matching. Such
a geometry can be interesting for sensing applications, where interaction with strongly
concentrated fields is desired. Similar observations weremade in the language of Fabry-
Perot resonances for the limiting case when the right and left waveguides’ insulator
thicknesses go to infinity [30].
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Once a matching left, center and right waveguide triplet is found, the procedure can
be recursively repeated to cascade more junctions without getting any reflection at the
leftmost waveguide.

4.3.2 Mode Converter Design

Now that we have the conditions (4.7) and (4.9)-(4.10) for zero reflection, we can test
their validity. Condition (4.7) is more general and is applicable to the lossy case. We did
a series of simulations in which we extracted S for a hypothetical loss-less metal with
a real, negative permittivity єm = −143.497. The results were very similar to the case in
Figure 4.3 where the loss was included. That led us to suspect that the conditions for
the lossless reciprocal junctions, (4.9) and (4.10), would be essentially sufficient in the
design of amode converter that converts themode of a wavelength sizedȚȖȚwaveguide
(b = 0.9λ) to that of a sub-wavelength one with no reflection.

In our design we choose the left waveguide width to be 0.9λ and the center wave-
guide width to be 0.5λ as shown in the inset in Figure 4.4(b). The parameters that we
need are the insulator width of the right waveguide, w, and the length of the center
waveguide, ℓ.

The width of the right waveguide can be chosen by satisfying (4.9). In Figure 4.4(b)
PL is the location of the b = 0.9λ to b′ = 0.5λ junction on the LS22 curve. To satisfy (4.9)
we need to have ∣LS22∣ = ∣RS11∣. The solution can be graphically found by drawing a circle
in the complex plane with a radius ∣PL∣ centered at the origin and finding its intersec-
tion with the RS11 curve. The intersection point is denoted by PR. PR corresponds to a
right waveguide thickness of 0.16λ. The phase condition (4.10) is then easily calculated
from the phases of the scattering coefficients,∡PL and∡PR. After some simplification
through the use of the numerical value for kC one gets ℓ/λ = 0.1377 + 0.4861n, where n
is any positive integer.

To check our design, we numerically simulated the structure shown in the inset of
Figure 4.5 using ȓȑȓȑ and looked at the amount of power reflected back as a function
of the center waveguide length ℓ. We also calculated the power reflection coefficient
through the use of the transfer matrix formalism in which we multiplied the transfer
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Figure 4.5 – Test of the scattering matrix description. Horizontal axis is the length of the center
waveguide normalized to λ. Vertical axis is the power reflection coefficient. ȓȑȓȑ simulation results
(●), transfermatrix calculations using lossy junctions (solid line) and lossless junctions (dashed line)
are also plotted. Transfer matrix calculations do take into account the loss in the center waveguide
for both cases. As the junctions get very close to each other (< 0.1λ) transfer matrix model begins
to break down due to higher order modal interactions.

matrices for the right junction, TR, a center waveguide of length ℓ, TC , and the left
junction, TL, to get the overall transfer matrix T = TLTCTR, and plotted ∣T21/T11∣2 of
T as a function of ℓ/λ. We did the calculations for two different sets of {TR ,TL}: one
in which we used the scattering matrices for the lossy junctions and another for the
lossless junctions. The center waveguide of length ℓ had loss in both cases i.e. kC =
(1.03 − i9.45 × 10−4)2π/λ.

Figure 4.5 verifies that lossless junction models are quite effective at modeling the
waveguide discontinuities and the prediction of the length of the center guide for zero
reflection reached by their use, ℓ/λ = 0.1377 + 0.4861n is very accurate. The lossy junc-
tion model on the other hand gives results essentially indistinguishable from the simu-
lation results as long as the two junctions are not very close to each other (< 0.1λ). When
the junctions get very close, the coupling of higher order non-propagating modes be-
comes important and the single mode modeling we employed in the construction of
scattering matrices breaks down. For such closely spaced junctions, the whole struc-
ture should be treated as a single unit and its characteristics should be extracted by the
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techniques described in Section 4.2.

Lastly, (4.9)-(4.10) reproduces the well known quarter wave (λ/4) impedance match-
ing formula used at radio frequencies (ȟȓ) [130, Sec. 5.6] where one uses

−LS11 = LS22 = (Z0C − Z0L)/(Z0C + Z0L)

−RS11 = RS22 = (Z0R − Z0C)/(Z0R + Z0C).
(4.11)

In the equation above Z0{L,C,R} denotes the characteristic impedance of the left, cen-
ter and right ȟȓ transmission line. Solution of (4.9)-(4.10) with (4.11) and either the
condition Z0R > Z0C > Z0L or Z0R < Z0C < Z0L gives

Z0C =
√
Z0LZ0R and ℓ = λ

4
+ n λ

2
(4.12)

where n is any positive integer. Recently, a power transmission of 86% for a waveguide
converter designed using (4.12) was demonstrated [122].

4.4 Circuit Model for the Waveguide Junction

So far, we have characterized the ȚȖȚ junctions and with that characterization designed
a waveguide matching section by the use of the scattering matrices. Another important
approach in microwave waveguide modeling is the use of equivalent circuit models,
which can give an intuitive picture of the system as well as allowing the use of circuit
simulators for design.

Here we relate the scattering matrix and circuit models, and show simplified circuit
models that can characterize the ȚȖȚ waveguide interfaces. Since we only have single
propagating modes in the guides we consider, we can also use equivalent transmission
lines to describe the propagation between interfaces. Taking these circuit and trans-
mission line approaches together, we can then model a broad range of ȚȖȚ systems in
circuit models.

There is no unique way to describe S using lumped circuit elements [132, p. 316].
To choose one circuit out of the infinite possible set that could correspond to the same
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Figure 4.6 – Circuit description of the lossless (єm = −143.497) waveguide junction for b = 0.1λ (▲),
b = 0.5λ (∎), b = 0.9λ (●) (a) Square of the turns ratio, n2, which is equivalent to the impedance ratio
at the terminals of the transformer. Dashed line is the ȝȒȐ result described by (4.14). Inset shows
the circuit diagram. (b) Susceptance, B, for the ȚȖȚ (▲, ∎, ●) and the ȝȒȐ (△, ◻, ◯) case. B for the
ȝȒȐ case plotted by the use of (4.13). (c) Reactance, X, of the ȚȖȚ waveguide. X = 0 for the ȝȒȐ
parallel plate waveguide. (d) Error in S11 defined as ∣(S11 − S′11)/S11∣ where S11 is the exact solution,
−S′11 = (Z0R − Z0L)/(Z0R + Z0L) is the characteristic impedance model approximation. Inset on the
upper left corner shows the implication of the characteristic impedance model on the Smith Chart
where S11 (solid line in the inset) and S22 (dashed line in the inset) have a π phase shift. Compare
with Figure 4.3. The error is around 5 percent for b = 0.1λ where the π phase shift condition is
approximately satisfied. As the dimensions increase so does the error.

S, we will first look at the well studied ȝȒȐ case. After reproducing the ȝȒȐ results, we
will then add another term to the ȝȒȐ parallel plate waveguide model to account for
the properties of metals at optical frequencies. We will compare the lumped circuit
representation with the characteristic impedance models in the literature. At the end
of the section we will justify our choice of the additional circuit element, while we give
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a physical explanation for the circuit.

4.4.1 Exact Model

We will begin our analysis with the ȝȒȐ case. The solution to the scattering problem
for the junction of two ȝȒȐ parallel plate waveguides was developed and experimentally
verified [133]. It consists of a capacitor with susceptance B and a transformer with a
turns ratio of n ∶ 1. The susceptance and the turns ratio are described in terms of the
geometry of the junction. The susceptance value is given by

B = 2b
λ
{log [(1 − α

2

4α
)(1 + α

1 − α
)

1
2 (α+1/α)

]

+ 2A+ A
′ + 2C

AA′ − C2

+( b
4λ
)
2

(1 − α
1 + α

)
4α
(5α

2 − 1
1 − α2 +

4
3
α2C
A
)
2

}

(4.13)

where α = b′/b and

A = (1 + α
1 − α

)
2α 1 +

√
1 − ( bλ)

2

1 −
√
1 − ( bλ)

2
− 1 + 3α2

1 − α2

A′ = (1 + α
1 − α

)
2
α 1 +

√
1 − ( b′λ )

2

1 −
√
1 − ( b′λ )

2
+ 3 + α2

1 − α2

C = ( 4α
1 − α2)

2
.

The square of the turns ratio of the transformer is equal to

n2 = b′

b
. (4.14)

It is worthwhile remembering that the primary-secondary turns ratio of the transformer,
n ∶ 1, is also the ratio of the voltages at its terminals. From the conservation of power,
currents have the inverse ratio and as a result the impedance ratio at the transformer
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terminals is n2 ∶ 1.

The derivation of the circuit elements for the ȝȒȐ case can be found in [134], [135]
and [129]. The technique used is to find an approximate analytic solution to the static
limit of the scattering problem, and then to use the approximate solution as a basis for
further calculations with the variational principle [134, p. 107].

Note that for the ȝȒȐ case, only two parameters, B and n, are sufficient to describe the
junction even though in general three parameters are required for a lossless reciprocal
system. The non-dispersive nature of the main mode of ȝȒȐ parallel plate waveguides
leads to a further symmetry in the junction which reduces the number of circuit param-
eters required.²

At optical frequencies where the modes are strongly dispersive, a third circuit ele-
ment is needed in order to be able to fit the elements of S exactly. For that reason we
have an inductor term with a reactance X. A schematic of the circuit diagram is shown
in the inset of Figure 4.6(a). The ȝȒȐ parallel plate waveguide circuit is the same, with
X = 0. The normalization that we defined in (4.1) leads to transmission lines with a unit
characteristic impedance on both sides of the junction. From transmission line theory
we get the following equalities in terms of the equivalent impedance looking from the
left side of the circuit, Z1, and the equivalent admittance looking from the right side, Y2

−S11 =
Z1 − 1
Z1 + 1

and − S22 =
1 − Y2

1 + Y2
(4.15)

where

Z1 =iX +
1

iB + 1
n2

Y2 =(
1

1 + iX
+ iB) n2.

(4.16)

²One way to check this is by observing the failure of [134, p. 103, eq. (14)] for modes with k values
that depend on b which implies that more than two parameters are required. Conversely, numerically
calculating the determinant of the impedance matrix [125, p. 216], Z, as suggested in [133, Ch. 3, p. 119]
shows that indeed only two parameters are sufficient for the ȝȒȐ case. We also verified using ȓȑȓȑ that
(4.13) and (4.14) very precisely represent the ȝȒȐ junction.
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The reason why we have negative signs in front of S11 and S22 in (4.15) is because we de-
fined S based on the transverse magnetic component of the main mode, Hy. However,
the norm in circuit parametrization is to use the voltage reflection and transmission co-
efficients, which correspond to a scatteringmatrix description for the transverse electric
component, Ex . Just as in transmission line theory where the reflection coefficient for
voltage is the negative of that of the current, the same relationship also holds exactly
between the reflection coefficients of Ex and Hy.

We can calculate Z1 and Y2 from S via (4.15)

Z1 =
1 − S11
1 + S11

, Y2 =
1 + S22
1 − S22

. (4.17)

Rewriting (4.16) in terms of its real and imaginary parts gives

Z1 =
1
n2

B2 + 1
n4
+ i(X − B

B2 + 1
n4
)

Y2 =
n2

1 + X2 + i(n
2B − n2X

1 + X2) .
(4.18)

Now let the real and imaginary parts of Z1 and Y2 be denoted as ZR = Re(Z1), ZI =
Im(Z1), YR = Re(Y2) and YI = Im(Y2). Using (4.18) we get

Z1 = ZR + iZI = ZR + i (X − Bn2ZR)

Y2 = YR + iYI = YR + i (Bn2 − XYR)

and we therefore have

ZI =X − Bn2ZR

YI =Bn2 − XYR .
(4.19)

Inverting (4.19) gives

Bn2 = YI + YRZI

1 − YRZR
and X = ZI + ZRYI

1 − YRZR
. (4.20)
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Once we know Bn2 and X, we can calculate n2 using (4.18) as

n2 = YR(1 + X2) = ZR [1 + (Bn2)2] . (4.21)

Using equations (4.17), (4.20) and (4.21) one can calculate the circuit parameters
from S11 and S22. In Figure 4.6(a)-(c) we plotted n2, B and X as a function of b′/b for the
three different fixed b values of 0.1λ, 0.5λ and 0.9λ. Due to the negligible effect of loss
on junction characteristics, Figure 4.3 and Figure 4.6(a)-(c) carry the same information,
shown in different formats. It can be seen that the ȝȒȐ circuit description and the ȚȖȚ
circuit description lead to parameters which qualitatively have similar behaviors.

4.4.2 Simplified Model

Until now, the specific normalizationwe imposed on themodes (4.1)mapped themodal
propagation of waves into equivalent transmission lines of unit characteristic imped-
ance. In this section we will investigate the applicability of another characteristic im-
pedance definition for the ȚȖȚ junctions. The definition we use for the characteristic
impedance of an ȚȖȚ waveguide of insulator thickness b is [76]

Z0 = b
k
ωєi

. (4.22)

Note that, this new definition is amere rescaling of what wemean by voltage and current
of the equivalent transmission line, and such a redefinition does not change S11 and S22
but breaks the symmetry of S and therefore S12 ≠ S21 [130, pp. 199-200, prb. 4.15].

From transmission line theory one can calculate the current reflection coefficients
of the junction of two transmission lines with different characteristic impedances on
the right, Z0R, and on the left, Z0L, as

−S11 = S22 =
Z0R − Z0L

Z0R + Z0L
. (4.23)

The simplified characteristic impedance model based on (4.22) and (4.23) implies a
π phase shift between S11 and S22. We schematically plotted (4.23) on the Smith chart as
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an inset in Figure 4.6(d). Comparison of the inset and Figure 4.3 shows that the π phase
shift condition is more and more satisfied as the waveguide dimensions are decreased
to sub-wavelength dimensions. Figure 4.6(d) also supports this observation; error in
the approximate reflection coefficients of (4.23) decreases as the waveguide dimensions
become deep sub-wavelength. The characteristic impedance model is valid and useful
when the structure is small in comparison with the wavelength, so that the quasi-static
approximation holds.

4.4.3 Interpretation of Circuit Models

In the ȝȒȐ limit where there is no dispersion in the main modes, the ratio of character-
istic impedances Z0R/Z0L as defined in (4.22) limits to n2 (4.14). Therefore, the trans-
former in the exactmodel can be associated with the different characteristic impedances
on the two sides of the junction.

As the dimensions of the ȝȒȐ parallel plate junction are scaled up, the importance
of the susceptance term, B, increases. This is a sign of the increased influence of the
higher-order modes on the junction characteristics. B signifies the effect of the higher
order non-propagating modes, excited in the vicinity of the junction, on the main prop-
agating modes. B for ȚȖȚ waveguide is higher than that of ȝȒȐ parallel plate waveguide
with the same insulator dimensions. We observed that using bs = αb, b′s = αb′ as the left
and right waveguide insulator thickness in (4.13) for α = {1.08, 1.2, 1.4} corresponding
to the b = {0.9λ, 0.5λ, 0.1λ} cases gave good fits to the ȚȖȚ waveguide solutions plot-
ted in Figure 4.6(b). The dispersive nature of the ȚȖȚ waveguide mode and the finite
penetration of fields into the metal regions, which leads to a larger effective insulator
thickness, can explain the differences in B for the ȚȖȚ case [76].

The ȚȖȚ junction, with its predominantly negative єm at infrared frequencies, re-
quires an additional circuit term, an inductor with reactance X, to fully describe the
junction scattering characteristics (S) using circuit terminology. We can qualitatively
justify the existence of X by investigating the properties of S11 in the limit b′ → 0. We
see that for the ȝȒȐ case, S11 limits to +1 as highlighted in Figure 4.3(c). This is in line
with the fact that B → ∞ and n → 0 as b′ → 0 which leaves us with a short circuit for
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the ȝȒȐ case (Figure 4.7). On the other hand, for the ȚȖȚ case S11 limits to a value with
magnitude close to unity, but with a non-zero phase in the fourth quadrant of the com-
plex plane. In order to have this behavior, the limit of X should be non-zero since both
the ȚȖȚ and ȝȒȐ cases have the same limits for B and n. From Figure 4.6(c) we can see
that indeed X limits to a non-zero value as b′ → 0.

It is possible to associate an effective surface reactance Xs = iωLe with planar metal
surfaces where Le is the kinetic electronic inductance that electrons experience accord-
ing to the Drude model [136].³

S11

1

PEC

MIM iXś

n : 1

iB

iX

b´ 0

Figure 4.7 – Circuitmodels in the limit where the right waveguide width (b′) goes to zero. For the ȝȒȐ
parallel plate waveguide, the reflection coefficient for currents is unity. For the ȚȖȚ waveguide, the
reflection coefficient has a small negative phase as is evident from Figure 4.3(c). Surface reactance
of metals at optical frequencies has an inductive character. Investigation of the limit b′ → 0 leads us
to associate the inductor in our circuit model with the normalized surface reactance of the vertical
metal surfaces at the ȚȖȚ junction of total length b − b′ as shown in Figure 4.1.

In Figure 4.7 we schematically describe the b′ → 0 limit for the ȝȒȐ and ȚȖȚ junc-
tions. From the circuit model we see that

ȝȒȐS11 =
1 − 0
1 + 0

= 1

ȚȖȚS11 =
1 − iX′s
1 + iX′s

≅ 1 − i2X′s

where X′s ≪ 1 represents the surface reactance term normalized with respect to the
left waveguide’s characteristic impedance. In order to have a consistent description
of the junction, we should have X = X′s when b′ = 0. This limiting behavior allows
us to associate X with the effective normalized surface reactance of the perpendicular

³Note that [136] uses the e −iωt convention which leads to Xs = −iωLe .
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metal section of height b − b′ at the junction. A back-of-the-envelope calculation with
Xs ≈ b

√
µo/єm and Z0L as defined in (4.22) gives⁴ X′s ≈ Xs/Z0L ≈ {0.082, 0.081, 0.074}

for the b′ → 0 limit of b = {0.9λ, 0.5λ, 0.1λ} cases. Comparing these values to the
corresponding X values in Figure 4.6(c) shows that this calculation correctly predicts
the order of magnitude of X′s.

Our association of the circuit elements of the junction with physically more familiar
concepts does not necessarily make any of the calculations easier. One still needs to do
full wave simulations to extract the highly coupled B, X and n2 parameters. Further-
more, our analysis was based on a variation of the geometry while keeping the frequency
of operation fixed. Due to the highly dispersive nature of the refractive index of met-
als at optical frequencies, we expect that a frequency based analysis near the resonance
points of material dispersion characteristics will lead to the observation of interesting
phenomena at junction geometries. Such studies can be the subject matter of future
investigations. Nevertheless, we believe that the lumped circuit model at 1550 nm is
valuable in developing a more intuitive understanding of modal scattering at ȚȖȚ junc-
tions, and it allows a circuit-based analysis of complex systems of guides.

4.5 Conclusion

In this chapter we investigated the properties of infrared light propagation in ȚȖȚwave-
guides at 1550 nm by concentrating on the symmetric junctions between waveguides of
different dimensions. We applied techniques widely used in themicrowave literature to
characterize the ȚȖȚ junctions. We used a numerical method to extract the scattering
matrices of junctions of different geometries from full field solutions. We validated our
characterization by designing a mode converter that concentrates light from an ȚȖȚ
waveguide of wavelength sized dimension to one of sub-wavelength dimension with
zero reflection.

We parametrized the scattering matrix of the ȚȖȚ junction in terms of lumped cir-
cuit elements to come up with a more physical picture of the junction properties. The

⁴
√
µo/єm (where µ0 is the permeability of free space) is the surface impedance of a metallic half space

which is also equal to the intrinsic impedance of the metallic medium [137].
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circuit representation of the junction helps us associate the effects of geometry, material
properties and wave propagation in terms of a simple network of a capacitor, inductor
and a transformer. The scattering matrix description of junctions can be used to design
optical circuitry with complex functionality using tools of circuit analysis [138,139]. It is
conceivable to build a library of junction geometries associated with their scatteringma-
trices for different waveguides including three dimensional nano-metallic ones [140].
Such a library, indexed according tomodal scattering and propagation properties, would
be invaluable in the design of integrated optical circuits composed of many interacting
components.



Chapter 5

Fundamentals of Antennas

5.1 Introduction

RȒȠȒȎȟȐȕ Ȗț electromagnetic radiators bloomed during the Second World War era.
Great sumswere spent on organizing scientific research towards winning the war.

Among the many different military applications of science—from nuclear weapons to
cryptography—the microwave theory led to an especially useful tool: radar. The ȚȖȡ
Radiation Lab was the center of research activity. After the war ended, a 28 volume
treatise onmicrowave theory was published, calledȚȖȡ Radiation Laboratory Series. The
series covered a wide range of topics. Of special interest to us in this chapter is volume
12, Microwave Antenna Theory and Design [141].

In the previous chapters, we have seen how to analyze waveguiding geometries
based on the modes that they support. This chapter will focus on radiating structures,
namely antennas. We will outline the basics of antenna theory and then talk about
methods of analyzing antennas to be used at optical frequencies. Wewill begin by going
through the antenna theory for perfect metals—a good approximation for microwave
frequencies. Then, we will look at antennas as scatterers and will analyze them using
analytical and numerical methods. Lastly, we will describe the intricacies of designing
an integrated antenna/detector structure.

83
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5.2 Basics of Antenna Theory

In chapters three and four, we have talked about the details of modal propagation in
waveguides. In this section, we will make use of some of our results, and have a quali-
tative look at the radiation problem.

.

.⋯

.λ/4

.(a)

.λ/2.(b)

Figure 5.1 – Transition from a transmission line to a radiating antenna. Arrows denote the direction
of current.

If Figure 5.1(a) we show a sketch of a transmission line with an open circuit termi-
nation. At the plane of termination, current will be zero and the voltage value will be
a maximum, leading to a current reflection coefficient of −1 and a voltage reflection
coefficient of +1. Further away from the plane of termination, due to the interference
of incoming and reflected waves, a sinusoidal current pattern will form.

If we bend the ends of transmission line right at the point where the current is a
first maximum, we arrive at the canonical λ/2 dipole antenna. In Figure 5.1(b) we show
the equivalent current pattern of the half wave dipole. Each arm of the half wave dipole
is of length λ/4, and the current maximizes at the center of the dipole.

We can calculate the far-field radiation pattern of a half wave dipole by integrating
the current at a given spherical direction (θ , ϕ). Due to the azimuthal symmetry, there
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will not be any ϕ dependence. In the θ direction it can be shown that [142, p. 167]

Eθ ∝
cos[(kL/2) cos(θ)] − cos(kL/2)

sin(θ)

where k is the wave vector of the fundamental mode of the transmission line. kL = π is
the first resonance point, and the radiation pattern for that case is plotted in Figure 5.2.

....

.x

.z

.θ

Figure 5.2 – Theoretical radiation patterns of the half-wave dipole antenna.

The first resonance point of the antenna is intimately related to the feeding trans-
mission line. If the transmission line main mode is free of dispersion—i.e. the first
mode has a ȡȒȚ like character—then, the total physical length of the antenna will be
half the free space wavelength, λ/2. However, when there is dispersion, i.e. wavelength
within the waveguide is shorter than the free space wavelength, then, a resonance will
be observed for lengths shorter than λ/2. Or, equivalently, for a fixed total length, res-
onance frequency will decrease, i.e. redshift.

In the following sections, we will substantiate the qualitative picture drawn above
with more quantitative calculations. It should be noted, however, that what we have
shown so far neglects the details of the coupling from the transmission line to the ra-
diating antenna element. We have made simplifying assumptions about the nature
of the modal propagation—which may or may not hold true. For instance, antenna
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impedances are usually defined with respect to a ȡȒȚmode propagating within a trans-
mission line connected to the radiating structure. In the optical domain, the validity
of such an approximation should be carefully studied. Furthermore, antenna imped-
ance depends on the way that the antenna is connected to the waveguiding geometry
even for radiowave frequency antennas [143, p. 39]—certainly, similar effects will be
importance at the optical frequencies. In [143, Appendix ȖȖȖ], various different analyti-
cal formulations of the dipole antenna impedance are provided. However, as pointed
out in [143, Appendix ȖȖȖ, p. 466]

From a practical point of view the antenna impedance is the input impedancemea-

sured several half-wavelengths away from the antenna, so that the voltage and cur-

rent on the line are those due to the incident and reflected ȡȒȚ modes.

The above observation hints that a unique antenna impedance definition would be as-
sociated with the waveguide with which the antenna is supposed to be working with.
For the dipole antenna case, most of the models assume a coaxial cable connected at
the center feed point of the dipole. However, it is not certain whether or not the same
antennamodels would be useful if, say, amicrostrip waveguide were to be used to excite
the antenna. Likewise, generalization to optical frequencies requires one to figure out
(a) what the best wave guiding mechanism to use for the application of interest is, and
(b) given the waveguide geometry and the fundamental mode that is supported by it,
how the interactions between the main mode and radiating elements can be concisely
represented through the use of circuit models. Further justification for these thoughts
can be found in [141, p. 38]

Microwave lines are, in fact, generally so designed that they can support free prop-

agation of only one mode. Nevertheless, though a single mode is incident on the

antenna, the antenna itself excites other modes, in addition to giving rise to a re-

flected wave in the incident mode. It is only at points so far from the antenna that

the other modes have been attenuated to negligible amplitudes that a waveguide is

equivalent to a two-wire line.

Therefore, during the rest of the chapter, we will treat antennas as scatterers and look
at their interaction with electromagnetic waves propagating in modes of the free-space,
i.e. plane waves. We will focus our attention on the free-space problem, but it is
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worthwhile underlining the importance of coming up with concise representations of
antenna-waveguide coupling geometries so as to be able to couple light energy into de-
vices designed to work in plasmonic waveguides as in [144].

5.3 Antennas as Scatterers

Due to the duality of Maxwell’s equations, antennas can be treated either as receiving or
radiating structures and the two descriptions are closely related to each other. Because
of our interest in using optical antennas to design improved photo-detector systems,
from now on we will treat the antennas in the receiving case¹ and in this section we
will provide some of the techniques for analyzing electromagnetic scatterers of various
types.

5.3.1 Mie Theory

Exact calculation of the scattering of electromagnetic waves by a sphere was one of the
important theoretical challenges of classical physics of the early 20th century. Gustav
Mie²—who was interested in the scattering properties of gold colloidal particles in wa-
ter—was one of the first people to solve the problem [14, p. 82]. Therefore we will use
his name in this section for our analysis of one of the few exactly solvable three dimen-
sional scattering problems: the scattering of a plane wave by a sphere. In order to be
consistent with other literature on the topic, we will use the exp(−iωt) convention.

The geometry that we will investigate is as shown in Figure 5.3. The incident plane
wave is polarized in the x̂ direction. We will start by expanding the plane wave in the
vector spherical harmonics. The vector spherical harmonics are closely related to the

¹On the other hand, if we were to be interested in using antennas in a waveguide geometry, then it
would make more sense to treat the antennas as radiating elements which couple the mode(s) of a given
waveguide to those of the free-space modes. For instance, it would be far more effective to calculate
the radiation pattern of an antenna-waveguide geometry if one looks at the radiated fields rather than
sending plane waves at various directions individually and calculating their coupling efficiency into the
main mode of the waveguide geometry.

²See [145] for a brief biography of Mie.
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scalar spherical harmonics defined as

ψemn = cos(mϕ)Pm
n (cos θ)zn(kr)

for the even, hence the subscript ‘e’, case and

ψomn = sin(mϕ)Pm
n (cos θ)zn(kr)

for the odd, hence the subscript ‘o’, case. Here zn denotes an appropriate combination of
the linearly independent solutions of the radial part of the wave equation (∇2 + k2)ψ =
0—namely, spherical Bessel functions of the first and the second kinds. Pm

n are the
Legendre functions of the first kind.

. .x

.y

.z

.a

.Incident Field

.
Scattered
Field

Figure 5.3 – Geometry of the Mie Theory calculations

The vectorial spherical harmonics are generated from the scalar ones via the follow-
ing definitions

Memn = ∇× (rψemn) Momn = ∇× (rψomn)

Nemn =
∇×Memn

k
Nomn =

∇×Momn

k
.

It is possible to expand any field configuration that has zero divergence (i.e. one which
does not have any sources in it) in terms of the vectorial spherical harmonics. Of partic-
ular interest is the expansion of a plane wave. Suppose we have a plane wave polarized
in x direction, propagating towards a spherical dielectric object. The symmetry of the
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geometry leads us to use the spherical coordinate system. However, we are also required
to be able to expand a plane wave in terms of vector spherical harmonics in order to fully
take advantage of the symmetries. We have

Ei = E0 exp(ikr cos θ)x̂ = E0

∞
∑
n=1

in
2n + 1
n(n + 1)

(Mo1n − iNe1n)

and by using ∇× E = −∂B/∂t = iωµH we get

Hi = −
k
ωµ

E0

∞
∑
n=1

in
2n + 1
n(n + 1)

(Me1n + iNo1n)

for the electric and the magnetic fields. Detailed derivations of these equations can be
found at [14, Sec. 4.2].

Scattered fields can also be written as a superposition of the vector spherical har-
monics. We will have

Es =
∞
∑
n=1

En (ianN′e1n − bnM′o1n)

Hs =
k
ωµ

∞
∑
n=1

En (ibnN′o1n + anM′e1n)

where the prime (′) denotes that the radial part of the scattered fields are Hankel func-
tions, i.e. spherical Bessel functions of the third kind, whereas the unprimed vector
spherical harmonics have radial parts which are composed of the spherical Bessel func-
tions of the first kind. In the expressions above En = in(2n + 1)/[n(n + 1)].

Once we know what the scattered fields—or, equivalently what the coefficients an
and bn are—we can define the scattering cross section of the sphere, Csca, as

Csca =
Wsca

Ii
= 2π
k2

∞
∑
n=1
(2n + 1)(∣an∣2 + ∣bn∣2).

Here,Wsca is the total power flux due to scattered fields through a sphere of radius r > a
defined as

Wsca =
1
2
Re ∫

2π

0
dϕ ∫

π

0
dθr2 sin(θ)Es ×H∗s
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and Ii is the intensity of the incoming plane wave

Ii =
1
2

k
ωµє

E2
0 .

Finally, the scattering efficiency, Qsca, is defined as

Qsca =
Csca

πa2
,

and it relates to the amount of scattering that the sphere causes, normalizedwith respect
to its geometrical cross section area.

Total fields outside of the sphere are

E =Ei + Esca
H =Hi +Hsca.

Therefore the Poynting vector is

S = 1
2
Re[E ×H∗] = Si + Ssca + Sext.

Total power absorbed,Wabs, in a closed volume A is

Wabs = − ∫A S ⋅ r̂ dA
where r̂ is the normal to the surface A. If Wabs > 0 power is absorbed in the volume.
From the definition of S we get

Wabs = − ∫A Si ⋅ r̂ dA− ∫A Ssca ⋅ r̂ dA− ∫A Sext ⋅ r̂ dA
=Wi −Wsca +Wext.

The reason for the sign difference of the Wsca term is the fact that scattered fields by
construction propagate away from the scatterer. We will assume that the scatterer is
surrounded by a medium with no absorption, thereforeWi = 0. Hence, we arrive at the
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equality
Wext =Wsca +Wabs

which defines the extinction cross section and extinction efficiency as

Cext =
Wext

Ii
= 2π
k2

∞
∑
n=1
(2n + 1)Re (an + bn)

whereWext is defined as,

Wext =
1
2
Re ∫

2π

0
dϕ ∫

π

0
dθr2 sin(θ) [Ei ×H∗s + Es ×H∗i ]

and finally we have,

Qext =
Cext

πa2
.

By applying the boundary conditions, that is, the continuity of the tangential mag-
netic (Hθ ,Hϕ) and electric (Eθ , Eϕ) fields, the coefficients an and bn can be found for
arbitrary dielectric spheres. In Figure 5.4, we plot Qext as a function of 1/λ for three dif-
ferent sizes of spheres made out of water. We use the frequency dependent refractive
index of water from [146]. Our aim here is to check our calculation routines by com-
paring them against results obtained by others. Comparison of Figure 5.4 with [14, Fig.
4.6, p. 105] validates our calculations.

Now, we can investigate the applicability of another boundary condition, namely, the
surface impedance boundary condition, for spheres made out of metals—gold in our case.

The surface impedance boundary condition relates the tangential fields on surfaces
via the condition

E∥ = Zs n̂ ×H∥. (5.1)

Here, ∥ denotes tangential field components and n̂ is the surface normal of the sphere.
Zs is called the surface impedance associated with a metal, defined as

Zs =
√

µ0
єm

where µ0 is the permeability of vacuum and єm is the refractive index of the metal.
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Figure 5.4 – Extinction efficiencies of water spheres of three different radii.

Using (5.1), and the definitions of the incident and the scattered fields, one can de-
duce the values for an and bn as

an =
jn(ka) − i

Z0

Zs

[ka jn(ka)]′
ka

hn(ka) − i
Z0

Zs

[kahn(ka)]′
ka

bn =
jn(ka) − i

Zs

Z0

[ka jn(ka)]′
ka

hn(ka) − i
Zs

Z0

[kahn(ka)]′
ka

where the term [ka jn(ka)]′ is a shorthand notation for

d
dρ
{ρ jn(ρ)}∣

ρ=ka

and hn are the spherical Bessel function of the third kind, i.e. Hankel functions. Similar
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Figure 5.5 – Scattering efficiencies of gold spheres of various different radii. Solid lines are the
exact Mie solutions, dot-dashed lines are the solutions obtained through the use of the impedance
boundary conditions.

conclusions for scattering by impedance spheres are also reported in [147, p. 476].

We have solved the scattering of a plane wave from gold spheres of various dimen-
sions using both the full Mie solution and also using the surface impedance boundary
condition solution. The full solution allows the fields to exist within the gold spheres,
whereas the surface impedance calculations neglect the fields within the sphere and ap-
proximate the effects of thematerial by a boundary condition given in (5.1). FromFigure
5.5 we can see that there is perfect agreement between the two approaches as long as the
radius of the sphere is larger than the penetration depth of the fields into themetal [148].
As the frequency is increased—inverse wavelength is increased—electromagnetic fields
penetrate more and more into the metal due to a decrease in the permittivity of metals.
As a result, the two approaches begin to deviate from each other. However, in the in-
frared region, the surface impedance approximation works sufficiently well. Now, we
will make use of this observation to analyze scatterers other than spheres by discretiz-
ing an integral equation for electromagnetic fields and we will call this technique the
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method of moments.

5.3.2 Method of Moments

So far, we have only investigated spherical shapes and were able to analytically calculate
the scattering of fields. A natural question to ask at this stage—one which we will
answer soon—is what to do in case the scatterer of interest is one which has little or no
symmetries in its shape, an arbitrary geometry in general.

It is possible to describe scattering by an arbitrary shaped object through integral
equations derived from Maxwell’s equations. In antenna theory, two specific equations
are often emphasized: the electric field integral equation (ȒȓȖȒ) and the magnetic field in-
tegral equation (ȚȓȖȒ). In this section, we will specifically focus on the ȒȓȖȒ.

If we have a scatterer surface S—which may be open or closed—and an incident
electric field Ei impinges upon the scatterer, surface currents will be formed such that

• for perfect electric conductors, the tangential electric field will be zero on the sur-
face,

• for surfaces with a finite surface impedance, the surface currents will form to
satisfy the surface impedance boundary condition (5.1).

Once we know the surface currents on S, then the scattered fields can be calculated
through the use of the vector potential A and the scalar potential ϕ via

Es = −
∂A
∂t
−∇ϕ

= − jωA −∇ϕ where we have

A(r) = µ
4π ∫S J

e − j kR

R
dS′ (5.2)

ϕ(r) = 1
4πє ∫S σ

e − j kR

R
dS′ .

In the expressions above, R = ∣r − r′∣ where r is the observation point and r′ is a source
point on S. σ is the charge density on S which can be found through the use of the
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continuity equation
∇S ⋅ J = − jωσ

on S denoted by the subscript on ∇S. Note that we have reverted back to the exp( jωt)
time convention in this section.

One can define an integro-differential equation based on the unknown surface cur-
rent J by the application of (5.1) which results in

E∥ =ZS n̂ ×H

Ei,∥ + Es,∥ =ZSJ

Ei,∥ + (− jωA −∇ϕ)∥ =ZSJ equivalently

Ei,∥ =( jωA +∇ϕ)∥ + ZSJ . (5.3)

Equations (5.2)-(5.3) are called the ȒȓȖȒ. After the formulation of the ȒȓȖȒ, the equation
is solved on the surface S where R → 0. There are different ways of solving the equation;
the one which we will pursue is based on the approach developed by Rao, Wilton and
Glisson [149], which we will explain now.

Figure 5.6 – Triangulation of a spherical surface using the basis functions developed by Rao, Wilton
and Glisson.

The main idea in [149] is to come up with a local set of basis functions that can
be used to meaningfully map S. The basis functions are composed of triangles, and
each side of the triangle corresponds to a current element which is proportional to the
length of the edge (but normalized with respect to the total area of the each triangle).
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Figure 5.6 shows an example triangulation for a sphere. For more details about the
basis functions, please see [149]. Once the basis functions are defined, then (5.3) is
discretized using the basis functions, necessary overlap integrals are calculated, and
finally as a result the equation is converted into a linear matrix equation the solution of
which leads to the surface currents. This technique of converting an integral equation
into a series of coupled linear equations through the use of a set of basis functions and
their overlap integrals is called the method of moments (MoM).

In [149], equations are provided only for the ȝȒȐ surfaces. The perfect electric con-
ductor is equivalent to the ZS = 0 surface impedance. We generalized the formulation
in [149] for arbitrary ZS and to check our formulation, we simulated the scattering off of
spheres with different radii and with surface impedances of gold.³ In Figure 5.7 we plot
our results. As can be seen from the figure, the agreement is pretty good over a wide
range of frequencies. However, the ȒȓȖȒ method is plagued with divergences at natural
frequencies of closed scatterers [150]. We can see that the agreement between the ex-
act result and the method of moments solution deteriorates above a certain frequency
based on the dimensions of the sphere.

After having simulated the scattering off of spheres, we then looked into the scatter-
ing properties of thin sheets of rectangular patches of zero thickness. Our aim was to
simulate a dipole antenna and understand its resonance properties for the case when
the dipole element is not very narrow. In Figure 5.8, we show the results for scattered
energy off of a rectangular patch of width 189 nm and of length 650 nm. For the perfect
electric conductor case, the first resonance is around λ = 1500 nm which is expected
from classical antenna theory—we would expect a resonance at λ/2 length, and due to
the rather large width of the patch (189 nm) the resonance has shifted. When we in-
clude the surface impedance associated with gold into our scattering calculations, we
see that the resonance has shifted to lower wavelengths, λ ≈ 2 μm.

The MoM simulations do not require much computational power and the MoM
technique is a good tool to get a qualitative understanding of the properties of antennas
at optical frequencies. However, the fact that arbitrary dielectric structures cannot be
simulated and the divergence problems associated with natural frequencies of closed

³Data from [16] was used to calculate the surface of impedance of gold at different wavelengths.
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Figure 5.7 – Comparison of MoM simulations with the exact Mie calculations. Solid lines denote the
exact Mie solution using the full field formulation, crosses denote the method of moments calcula-
tions.

structures cast a shadow on the the amount of trust one can have from the results ob-
tained through the MoM. Furthermore, if the scatterer of interest is in the vicinity of a
layered medium, then the MoM formulation requires the calculation of the necessary
Green’s function of the layered system—a non-trivial computation.

Is there a simpler, more general method that can tell us how electromagnetic waves
scatter off of arbitrary geometries without having to make questionable assumptions
about their properties? One possible answer to the question lies in the domain of meth-
ods dubbed with the prefix finite-difference, one of which we will investigate next.
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Figure 5.8 – Method of Moments simulation results and the red shift observed in resonance length.

5.3.3 Finite-Difference Time-Domain

Up until now, the techniques we have introduced for the calculation of the scattering of
electromagnetic waves had certain limitations: Mie scattering only applies to spherical
geometries, and the method of moments cannot be used in cases where the surface
impedance approximation fails. In this section, we will introduce the finite-difference
time-domain (ȓȑȡȑ) technique, which will enable us to analyze structures with arbitrary
shapes and dielectric properties under various light illumination conditions.

The main idea behind ȓȑȡȑ is to discretize space and time. Space is discretized into
little cubes. Each cube will have six fields associated with itself—three for the electric
and another three for the magnetic fields. We will step discretely in time, and at each
time step, we will update the fields in every cube. Update of the fields in a given cube
will depend on the field history of the cube and the field history of the surrounding
cubes. Furthermore, the way we update the fields of the cubes will depend on the type
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of the cube: a cube which represents a lossless dielectric will update its fields differently
than another one which represents a metal.

.

.(i , j, k)
.Ex

.Ey

.Ez
.Hx

.Hy

.Hz

Figure 5.9 – Yee Lattice used in finite difference frequency domain calculations.

Figure 5.9 shows the (i , j, k)th cube in our lattice. As you can see, the fields are
defined at different positions. Let ∆x, ∆y and ∆z represent the separation of the cubes
in x̂, ŷ and ẑ directions respectively. The index (i , j, k) will be used as a shorthand to
refer to the position r = (i∆x)x̂ + ( j∆y) ŷ + (k∆z)ẑ. From the figure, we see that the
fields are defined at

Ex →(i + ⁄ , j, k) Ey →(i , j + ⁄ , k) Ez →(i , j, k + ⁄)

Hx →(i , j + ⁄ , k + ⁄) Hy →(i + ⁄ , j, k + ⁄) Hz →(i + ⁄ , j + ⁄ , k) .

Why define the positions in such an eclectic way? The reason will be apparent once
we investigate the details of the Maxwell’s equations, which will be put on the lattice of
fields. First, let us recall the differential form of Maxwell’s equations

∇×H =J + ∂D
∂t

∇× E = −M − ∂B
∂t

J =Jsource + σE

M =Msource + σ∗H

(5.4)

where σ is the electrical conductivity in units of siemens/meter and σ∗ is the magnetic
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conductivity in ohms/meter. J and M refer to the electrical and magnetic current den-
sities respectively.

For linear, isotropic, non-dispersive and lossy materials we have the following set of
equations:

∂H
∂t
= − 1

µ
∇× E − 1

µ
(Msource + σ∗H)

∂E
∂t
=1
є
∇×H − 1

є
(Jsource + σE)

Looking at the x, y and z components separately results in

∂Hx

∂t
= 1
µ
(
∂Ey

∂z
− ∂Ez

∂y
−Msource,x − σ∗Hx)

∂Hy

∂t
= 1
µ
(∂Ez

∂x
− ∂Ex

∂z
−Msource,y − σ∗Hy)

∂Hz

∂t
= 1
µ
(∂Ex

∂y
−
∂Ey

∂x
−Msource,z − σ∗Hz)

∂Ex

∂t
=1
є
(∂Hz

∂y
−
∂Hy

∂z
− Jsource,x − σEx)

∂Ey

∂t
=1
є
(∂Hx

∂z
− ∂Hz

∂x
− Jsource,y − σEy)

∂Ez

∂t
=1
є
(
∂Hy

∂x
− ∂Hx

∂y
− Jsource,z − σEz) .

(5.5)

As you can see above, space and time derivatives are coupled to each other through
the curl equations. Our aim is to discretize the equations in space-time in order to come
up with an iterative mechanism which solves the scattering problem. We will use the
convention A∣ni, j,k to denote the discretized version of a function A(r, t) where (i , j, k)
signifies r and t = n∆t. Note that, in (5.5), both sides of the equalities have the same time
and space coordinates, therefore, our discretization scheme should respect the locality
of the underlying differential operators.

We will define electric fields at integer multiples of ∆t whereas the magnetic fields
will be defined at time steps that are offset by ∆t/2. To understand the reason behind
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such a choice, let us take a closer look at the equation for Ex .

∂Ex

∂t
= 1
є
(∂Hz

∂y
−
∂Hy

∂z
− Jsource,x − σEx) . (5.6)

Here, time derivative of Ex is related to the space derivatives of Hz and Hy. In general,
we will calculate the derivatives based on a first order difference equation. For instance,
the derivative of an arbitrary function f (x) at x = x0 will be defined as

d f (x)
dx
∣
x=x0

≈ f (x + x0/2) − f (x − x0/2)
∆x

.

As you see above, in order to calculate the derivative at x = x0 we looked at the value of
the function at x = x ± x0/2 so that their difference would give us the slope of f (x) right
at where we are interested: x0. With that in mind, we can discretize (5.6) as

Ex ∣
n+1
i+⁄ , j,k − Ex ∣

n
i+⁄ , j,k

∆t
= 1
є
⎛
⎝

Hz∣
n+⁄
i+⁄ , j+⁄ ,k −Hz∣

n+⁄
i+⁄ , j−⁄ ,k

∆y
−
Hy∣

n+⁄
i+⁄ , j,k+⁄ −Hy∣

n+⁄
i+⁄ , j,k−⁄

∆z

− Jsource,x ∣
n+⁄
i+⁄ , j,k − σ

Ex ∣
n+1
i+⁄ , j,k − Ex ∣

n
i+⁄ , j,k

2
⎞
⎠
.

Note that, in the equation above, the left hand side is defined at t = (n + ⁄)∆t and so
is the right hand side—H fields are by construction defined with an half integer offset,
and the σEx term on the right side of (5.6) is averaged at n and n + 1 to approximate its
value at n + ⁄ . Likewise, Ex is defined at the space location (i + ⁄ , j, k), and so is ∂tEx ,
the left side of the equation. The derivatives on the right side are similarly defined at
the effective location (i + ⁄ , j, k).
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Finally, collecting terms in (5.6) gives the following update equation for Ex :

Ex ∣
n+1
i+⁄ , j,k =

1 − σi+⁄ , j,k∆t
2є i+⁄ , j,k

1 + σi+⁄ , j,k∆t
2є i+⁄ , j,k

Ex ∣
n
i+⁄ , j,k +

∆t
є i+⁄ , j,k

1 + σi+⁄ , j,k∆t
2є i+⁄ , j,k

×

⎛
⎝

Hz∣
n+⁄
i+⁄ , j+⁄ ,k −Hz∣

n+⁄
i+⁄ , j−⁄ ,k

∆y
−
Hy∣

n+⁄
i+⁄ , j,k+⁄ −Hy∣

n+⁄
i+⁄ , j,k−⁄

∆z

− Jsource,x ∣
n+⁄
i+⁄ , j,k

⎞
⎠
.

(5.7)

Derivation of the update equations are very similarly done for the other field compo-
nents. We refer the reader to [151, Ch. 3] for details. The development of the described
discretization scheme in time and space in a leapfrogged manner—that is all fields are
circulating one another both in time and space—was first developed by Yee in 1966 and
therefore Figure 5.9 is also called as the Yee Lattice [152].

So far, we have described the basic structure of the ȓȑȡȑ technique. In order to
successfully simulate metallic scatterers at optical frequencies, one needs to be able to

• excite the structure with a given polarization state and frequency range of light,

• take into account the dispersive nature of the optical properties of metals,

• be able to simulate non-periodic scatterers through the use of absorbing boundary
conditions, and

• be able to calculate scattered fields through the use of total field/scattered field
technique.

Exciting a finite amount of simulation volume by plane waves, which are supposed to
be infinite in extent, is non-trivial. However, the total field/scattered field technique is
one that solves the problem. We will talk about the total field/scattered field technique
next.

The total field/scattered field (ȡȓ/Ƞȓ) method is based on the induction theorem [153,
Sec. 7.9, pp. 334–338]. The main idea relies on the observation that, for the electromag-
netic wave equations, once the boundary conditions and the properties of the media are
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Figure 5.10 – Field teleportation schematic.

determined, the solution of the electromagnetic scattering problem is uniquely defined.

In Figure 5.10(a) incident electric and magnetic fields, Ei andHi are shown to prop-
agate through the volume, V , shown by the dashed curve. Suppose we put a scatterer in
V as illustrated in Figure 5.10(b). Due to the interaction of the incident fields with the
scatterer, there would be scattered fields Es andHs. The total fields within V , therefore,
are ET = Es + Ei and HT = Hs +Hi .

What would happen if we were to put some electric and magnetic surface current
terms Ji andMi on the boundary of V as shown in 5.10(c)? From Maxwell’s equations,
we can derive the boundary conditions

n̂ × (Hout −Hin) =Ji
n̂ × (Eout − Ein) = −Mi

by integrating the ∇× E and ∇×H terms in (5.4) along a closed surface that intersects
the boundary with the normal to the boundary defined as n̂ [153, Sec. 1.5]. Now, we
will make a specific choice for Ji andMi : we would like to have only the scattered fields
outside ofV and the total fields withinV . SettingHout = Hs, Eout = Es,Hin = HT = Hs+Hi
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and Ein = ET = Es + Ei results in

Ji = − n̂ ×Hi

Mi =n̂ × Ei .

Note that Ji andMi depend only on the incident fields, which are up to us to choose. We
can calculate what they will be for a given V and a given space/time input field depen-
dence. Then, we source the volume of interest which encapsulates our scatterer with
the surface currents Ji andMi. In the absence of the scatterer, such a sourcing will inject
the incident fields into the volume, and there will be no fields outside of V . Once we
add the scatterer, however, there will be scattering and we will only observe the scattered
fields outside of V . This technique—called ȡȓ/Ƞȓ or field teleportation method—allows
us to source infinite extent plane-wave like excitations within a finite simulation do-
main, and observe the scattered fields directly. In [154] a detailed numerical analysis of
the method, and its application and verification is presented.

.
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Figure 5.11 – Object oriented programming approach.

Before we conclude this section, we will briefly comment on the way in which we
coded the ȓȑȡȑ algorithm. As has been illustrated for the update equation given for Ex

in (5.7), electric (magnetic) fields are updated based on the material properties associ-
ated with the cube in which they reside and also based on the magnetic (electric) fields
surrounding them. One of the most painstaking parts of coding a three dimensional
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ȓȑȡȑ program is making sure that all the indices point to the exactly the right location,
and that correct values of the fields around a given point are read. Recently, object ori-
ented programming methodology was shown to help in this regard [155]. The idea is
to take the unit cell as shown in Figure 5.9 and collect all the information required to
update the fields in the unit cell in an “object” associated with the specific material. For
instance, one can define objects for lossless dielectric materials, metals with frequency
dependant permittivities and absorbing boundary conditions. Then, each cube is cre-
ated by instantiating an object, and cubes are made aware of their surrounding through
pointers to other objects. In Figure 5.11 we show how the computational lattice would
look for a cube in a two dimensional world. The cube would have its own fields, and
also it would know about its top, bottom, left and right neighbors. Field updates are
then done by going through all cubes and telling each one to update their electric fields,
then looping through all cubes and this time instructing them to update their magnetic
fields. Since electric fields depend on magnetic fields for field updates, and vice versa,
once both the electric andmagnetic fields are updated, one has successfully finished the
calculation of field propagation at a given time instant. The whole procedure repeats
until either fields converge to their steady state values for time harmonic excitations,
or, until all fields decay to a negligible value for gaussian pulse type excitations.

We will provide results of ȓȑȡȑ calculations in Section 5.4.

5.3.4 Green’s Function Methods

In this section, we will briefly talk about—mostly for reasons of completeness—our last
method of scattering analysis: the Green’s Function method. The technique requires
the calculation of the vectorial Green’s function for a stratified volume and then the use
of the Green’s function to calculate the scattering off of small patches of scatterers, the
collection of which lead to the desired scattering geometry. In the method of moments
section, we used the free space Green’s function in (5.2) to calculate the vector potential
A due to an arbitrary electric current source J. Whenwe havemultiple layers, a geometry
very common for integrated planar optics applications, then the form of the Green’s
function will change, but still, an integration of J with the appropriate Green’s function
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will lead to A and from there one can calculate the other field components.

Calculation of the Green’s function is non-trivial, and requires careful convergence
studies. For details of the technique and antenna related example calculations, we refer
the reader to [156–158].

5.3.5 Summary

We have introduced four techniques for scattering analysis. Mie theory gave exact re-
sults for scattering off of spherical geometries with arbitrary material properties. We
demonstrated the utility of impedance boundary conditions by using the Mie theory.
Method of moments calculations can be used to analyze a variety of geometries, though
the use of an arbitrary dielectric constant is not possible—but we have illustrated that
through the use of the surface impedance boundary conditions one can get a qualitative
understanding for the effects of metals’ optical properties on scattering characteristics
of various geometries. We then talked about ȓȑȡȑ and demonstrated how it can be ap-
plied to arbitrary geometries without any restriction on the dielectric properties. Lastly,
we briefly talked about the Green’s function method.

Of those methods which rely on discretization of a given volume to find out what
the scattering properties of a geometry is, both the method of moments and Green’s
function techniques requires solving large matrix equations. On the other hand, ȓȑȡȑ
does not involve any matrices, but one needs to do enough number of iterations until
a steady state is reached or until all fields have left the simulation domain. Due to its
conceptual simplicity and general applicability, we will use the ȓȑȡȑ technique in the
upcoming section to design an antenna integrated photo-detector.

5.4 Sleeve Dipole Design for a Closely Integrated Antenna-

Detector System

The interaction between optics and radio wave science may not be immediately appar-
ent, but the development of the radio telescope is an example of the proximity among
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the two disciplines (especially under the umbrella of astronomy), and the interdepen-
dence of the data created in one field on the other [159, p. 217]. Ginzton Laboratories at
Stanford University, where the author has conducted his research, is another example
of the historical continuity between themicrowave and the optics community. Founded
after ȤȤȖȖ to conduct research in microwave theory, in 2009, near the end of its lifes-
pan, most people in Ginzton now work on optics related topics as a result of the steady
drive of research agendas that led to an evolution from investigating electron accelera-
tion through the use of the klystron tubes to the use of light amplification by stimulated
emission in various experimental setups.

Likewise, advances in integrated circuit fabrication techniques have also resulted in
the development of planar optical components to be used in interconnect applications.
As the capabilities of manufacturing grew, smaller and faster devices were made possi-
ble. At the time these lines are written, 45 nm ȐȚȜȠ technology is available in consumer
electronics.

The capability to define such fine structures allows us to think about devices that are
on the order of an optical wavelength (∼ 1 μm) or smaller. One intriguing idea is to ask
whether the antenna technology commonly used in the radio and microwave frequen-
cies can be ported to the optical domain so as to boost the sensitivity of small—even
smaller than that of the wavelength—detectors while they retain their reduced dimen-
sions and hence very fast operation speeds?

In this section we will provide an affirmative answer to this question by going over
the requirements for an antenna integrated detector and describe a design with which
the requirements can be satisfied.

Planar geometry & Substrate Effects The first requirement is that the device should
be based on planar integrated circuit technology so that one can take advantage of the
available fabrication tools. Although three dimensional networks of integrated circuits
are being actively pursued, they are still in the research stage and therefore we will not
consider them here. Planar geometry dictates that the antenna will be sitting on a layer
with a permittivity higher than that of air. Resonance lengths of antennas are known
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to depend strongly on the properties of the media surrounding them [160, 161]. Exper-
iments made on chemically synthesized gold rods have also led to similar conclusions
at optical frequencies [162].

Telecom Wavelengths Fiber optic communications are based on the frequency bands
where the optical fibers have the lowest amount of loss—around 1300 nm and 1550 nm.
The designed device should be able to work at these near infrared frequencies and that
requires the choice of a semiconductor which absorbs light at these wavelength ranges.

Choice of Metal Metals’ permittivities change as the frequency of operation is varied
from the radiowave to the optical domain. In the previous sections, we used the surface
impedance method to show that the resonance length of a metallic patch at a given
frequency is reduced when we include the inductive surface impedance of the metal.

Antenna-Detector Integration Antennas are very sensitive to the presence of any other
scattering elements within their near fields. As a result, one should be very careful
about the way in which the semiconductor detector element is electrically contacted. If
the design does not take into account the contact geometry, then the resonance obtained
by the antenna will possibly shift or degrade.

. .60.100

.160

.50

.50.Ge

.Au

.Field Observation

Figure 5.12 – Top view of the open-sleeve dipole geometry. All lengths are shown in units of nanome-
ters. Dashed lines signify the continuation of the Ge line underneath the metal contacts. The metal
is 50 nm thick.

Given all these considerations, we decided to use the topology of the open-sleeved
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dipole antenna which was initially used to widen the bandwidth of regular dipole an-
tennas [163]. The structure we have is illustrated in Figure 5.12. The antenna element
is a regular dipole geometry of length 160 nm. The detector is a line of Ge of 60 nm
width, which continues underneath the horizontal metal contacts on both sides of the
antenna. The contacts are the sleeves of the open-sleeve topology. The contacts are 100
nmwide, and 50 nm thick. It has been shown that for light polarized in the direction of
the dipole element, the sleeves minimally interact with the scattering properties of the
dipole. The whole structure is sitting on an oxide surface and is covered with air on the
top. The reason for the choice of the oxide geometry was to minimize substrate effects.
We observed that if we were to situate the whole structure on silicon, for instance, due
to the high refractive index of the silicon, the resonant length of the antenna shrank
considerably and the enhancement at resonance was weak. However, moving to an
oxide substrate helped us alleviate the problem with minimal impact on the antenna
properties.

We tested our design using the ȓȑȡȑ technique. In order to be able to simulate the
infinitely long contacts, we used the ȡȓ/Ƞȓmethod twice: once to inject planewaves from
a simply layered⁴ 2ȑ geometry into another 2ȑ geometry with layers and the infinitely
long Ge wire, and again to inject fields from the infinitely long 2ȑ wire geometry into
the 3ȑ open-sleeve dipole structure.

ωpm ωm Γm
m = 1 1.014076882Ȓ16 0.000000000Ȓ00 0.000000000Ȓ00
m = 2 6.861574653Ȓ15 2.046174861Ȓ10 4.390839341Ȓ14
m = 3 1.832181311Ȓ15 8.225155873Ȓ14 3.542118567Ȓ15

Table 5.1 – Third order Lorentz fit to experimental permittivity values for Au around 1500 nm.

We chose to use Au as the metal due to its large and negative refractive index at
the near-infrared frequencies and the ease with which one can electrically contact Au
in experiments. We modeled the relative permittivity of Au using the Drude-Lorentz

⁴by which we mean a semi-infinite space of air and in contact with another semi-infinite space of
oxide



110 ȐȕȎȝȡȒȟ 5. ȓȢțȑȎȚȒțȡȎșȠ Ȝȓ ȎțȡȒțțȎȠ

function

єAu(ω) = 1 +
P

∑
m=1

(ωpm)
2

ω2
m − ω2 + iωΓm

with ω1 = 0

where ωpm is the plasmon frequency of the mth pole, ωm is the oscillator frequency and
Γm is the damping constant as has previously been defined in [164]. Note that, in the
expansion above, setting any one of ωm equal to zero makes it a Drude pole. That is
why the first pole has its oscillator frequency, ω1, set to zero to make sure we have a
mixture of Drude and Lorentz type of poles. We wrote a Mathematica script to fit the
experimentally measured optical properties of Au [16] using the Nelder-Mead method⁵
for a three pole, P = 3, model. The fit parameters are tabulated in Table 5.1. Figure 5.13
compares the fit to the experimental data. The two curves agree quite well with each
other.
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Figure 5.13 – Lorentz fit to experimental permittivity values for Au. Symbols are from [16]. Lines
denote the third order Lorentz model fit.

⁵http://reference.wolfram.com/mathematica/ref/NMinimize.html

http://reference.wolfram.com/mathematica/ref/NMinimize.html
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We covered the boundaries of our simulation domain with perfectly matched layers
of the uniaxial type [151] and recorded the fields in the volume of Ge in between the
two antenna arms as illustrated in Figure 5.12. We also recorded the near fields 25 nm
above the oxide interface, which corresponds to the plane that symmetrically bisects
the antenna geometry horizontally. In Figure 5.14 we plot the volumetric field intensity
enhancement for two different polarizations: ȡȚ refers to polarization along the dipole
direction, ȡȒ refers to polarization along the contact lines. As expected, volumetric en-
hancement is maximized when the polarization is parallel to the antenna arms. The
ratio of the two responses is also plotted as a function of wavelength. At resonance,
near fields show strong enhancement at the antenna edges and the Ge region as shown
in the inset. Due to the high refractive index of Ge, strong energy localization takes
place in between the two antenna arms.
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Figure 5.14 – Plot of the volumetric field intensity enhancement as a function of wavelength for
different polarizations. Arrows denote the direction of the electric field polarization for the incoming
plane wave illumination.

We experimentally tested the design by fabricating Ge based photo-detectors on a
thick layer of oxide. The fabrication process—which was quite elaborate and required
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us to grow crystalline Ge on oxide as well as to use focused ion beam to shape the Ge
and the overlying metal structure—and the relevant measurement results can be found
in [165]. In the next chapter, we will describe our efforts at experimentally observing
field enhancement by using Si as the detector element via the silicon-on-oxide wafer
technology and various optical measurement schemes.



Chapter 6

Fabrication and Measurement Results

6.1 Introduction

Iț ȡȕȒ șȎȠȡ chapter, we mainly talked about theoretical and numerical investigation
of antennas and detectors. As we mentioned at the end of the last chapter, we were

able to experimentally observe the antenna effect by growing crystalline germanium on
a thick (≈ 1 μm) oxide and investigate the properties of optical antennas by building
them through the use of focused ion beam (ȓȖȏ) [165]. One of the main problems we
faced was the slow throughput of the ȓȖȏ process¹ and the variability in the quality of
the Ge film that we were growing on oxide. As a result, we decided to switch to the
silicon platform, primarily due to the commercial availability of high quality silicon-on-
insulator (ȠȜȖ) wafers. Our aim was to replace the Ge with Si and operate the detectors
at lower wavelengths—around 800–900 nm where Si still absorbs. We also decided to
use the electron beam lithography technique as it allowed us to fabricate many more
samples per run than is possible with the ȓȖȏ. We will start the chapter by highlighting
the changes in the antenna design when one shrinks the wavelength from the 1300
nm range to the 800 nm range. Subsequently, we will explain the nano-fabrication
process flow that we developed for the Si platform. Then, we will talk about the opto-
electronic characterization setup that we built and provide measurement results from

¹We were using ȓȖȏ twice: once to shape the Ge nanowire detector element, and another time to shape
the metal into a dipole antenna.
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the devices that we fabricated. Finally, we will conclude the chapter after a discussion
of the measurement results.

6.2 Changes in the Design at ƕƒƍ nm

Optical properties of metals depends on the wavelength of light. As described in Chap-
ter 5, we fit the experimentally measured permittivity values for gold this time around
the 800 nm band. In Figure 6.1 we plot the experimental values from [16] and also the
fit we have using a four-pole Lorentz model with parameters as tabulated in Table 6.1.
Compared to the longer wavelengths, we see that both the real and imaginary parts of
the permittivity have decreased in magnitude. As a result, the surface impedance con-
tribution ZS =

√
µ/є increases and further reduction in the dipole resonance length is

expected—further than a mere rescaling of the wavelengths. In Figure 6.2 we see that
a 90 nm arm length for a dipole antenna with Si in between its dipole arms resonates
around 880 nm. The ∼ 90 nm range is the number to keep in mind when designing
antenna integrated detectors at around λ ≈ 850 nm.

ωpm ωm Γm
m = 1 4.386227824Ȓ15 0.000000000Ȓ00 1.565488534Ȓ15
m = 2 1.008519648Ȓ15 1.874386332Ȓ15 8.109675964Ȓ14
m = 3 7.251716026Ȓ15 3.534954035Ȓ15 0.000000000Ȓ00
m = 4 1.332784755Ȓ16 0.000000000Ȓ00 0.000000000Ȓ00

Table 6.1 – Fourth order Lorentz fit to experimental permittivity values for Au around 850 nm.

6.3 Clean Room Fabrication

Fabrication of thin, 25 nm, metal rods of varying lengths, aligned to sub-wavelength
pieces of silicon sitting on oxide was one of the main challenges that stood between us
and working devices. This section will describe the techniques we used at the Stanford
Nanofabrication Facility (Ƞțȓ)² to overcome the fabrication barrier. Most of the pieces

²http://snf.stanford.edu/

http://snf.stanford.edu/
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Figure 6.1 – Dispersion plot of the optical properties of Au at 850 nm. Symbols are experimental
values from [16] and lines are the result of the fourth-order Lorentz-Drude fit.

of equipment at Ƞțȓ have nicknames, and in the recipes and techniques to follow, we
will make frequent use of those nicknames. Therefore, before we go any further, let us
get acquainted with the names first.

Raith is the electron beam lithography system used. Its model number is ǵǹǴ. Raith
can be used to expose photoresist with a beam of electrons to get high resolution
features on surfaces and also as a high resolution scanning electron microscope.

AMT is a reactive ion plasma etcher. Its model number is 8100. It is mainly used to
etch oxides and nitrides, but we use it to etch silicon.

P5000 is a magnetically enhanced reactive ion plasma etcher. It also has optical end-
point detection capability. Its model number is ǹǴǴǴ and the ‘P’ stands for ‘pre-
cision.’

Woollam is a spectroscopic ellipsometer which can be used tomeasure film thicknesses
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Figure 6.2 – FDTD simulation results for a bare dipole antenna on oxide, resonance at 885 nm. Each
antenna arm is 25 nm wide, 25 nm thick, 90 nm long. In between the antenna arms, there is a 50
nm long Si cube shown as the crossed region in the inset.

and refractive indices. It works by sending light at different polarizations, fre-
quencies and at different incidence angles to surfaces and by measuring the po-
larization and intensity of the reflected light. Its model number is MǶǴǴǴ.

WBGen is the wet bench ‘general.’ The generality comes from the versatility of the
chemicals allowed to be used at this wet bench. Many non-standard processing
steps can be done at WBGen, though one needs to be extra cautious when using
WBGen—usage of protective clothing and shielding is a must when handling,
say, boiling sulfuric acid + hydrogen peroxide, i.e. piranha.

WBNonmetal is another wetbench. Samples that do not have any metals on them can
be used here to clean their surfaces or etch them using hydrofluoric acid (ȕȓ).
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WBDiff is the diffusion wet bench. Most of the furnaces that operate at high tempera-
tures require an extra level of cleanliness which can be achieved through the use
of the chemicals at WBDiff.

WBSolvent is the solvent wet bench. We mainly use it for lifting metal off of surfaces
to define the nano-metallic structures (the technique is called lift-off ).

Thermco is an oxidation furnace. It heats up samples to elevated temperatures where
silicon surfaces start to oxidize. If the furnace has some water vapor during the
oxidation, oxidation takes place much faster, though at the expense of a higher
variability in the resulting oxide thickness—this is called wet oxidation. If there
is no water vapor, then oxidation is much more slower, but the end thickness is
more uniform—this is called dry oxidation.

Headway is a spin coater used to coat photoresist on samples. Samples are attached
to a rotating head by vacuum, photoresist is applied on the sample by the help of
a syringe, and pressing a foot pedal starts the rotation of the head. Based on the
speed, the film thickness can be adjusted—film thickness is proportional to the
square root of the rotation speed.

YES Oven is the baking oven where hexamethyldisilazane (ȕȚȑȠ)³ is also applied to
the samples in it.

Innotec is a metal evaporator used to coat samples with thin layers of various metals.
Its model number is ESǶǺC. Precise measurement of film thickness is possible
as the deposition is made.

SEMHitachi is an older but still functional scanning electron microscope (ȠȒȚ). Its
model number is SǼǴǴ.

Sirion is another ȠȒȚ which actually resides in the Stanford Nanocharacterization Lab-
oratory (Ƞțș).⁴ Its model number is FEI XLǷǴ and it has better resolution than
SEMHitachi.

³a highly toxic chemical used to increase adhesion of resists to surfaces, especially to oxide
⁴http://snl.stanford.edu/

http://snl.stanford.edu/
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After this brief introduction to the tools of nano-fabrication, let us now delve into
the specifics of building photodetectors integrated with antennas.

6.3.1 SOI thinning

We start with ȠȜȖ wafers from ȠȜȖȡȒȐ company with 340 nm of active device (i.e. silicon)
layer on the top, 1 μm of SiO2 layer underneath and the Si carrier wafer below. The
wafer is lightly p-doped with 14–22 Ω ⋅ cm resistivity. The Si layer on the top is oriented
in the (100) direction. The top layer is too thick for our purposes, therefore we start
the process flow by oxidizing wafers at Thermco, and etching them at WBDiff using
hydrofluoric acid (ȕȓ). We would like to reach a final Si thickness of ∼ 80 nm and we do
the oxidation in three to four steps. The first steps are done using wet oxidation and do
the bulk of the oxidation. The last 1-2 steps are done using dry oxidation to provide us
with a uniform Si thickness at the end. After each oxidation-HF etch step, we measure
the thicknesses of the top SiO2 layer and the Si layer underneath usingWoollam. When
the desired Si thickness is obtained, then we cleave the wafer into roughly 1 cm squares
using a diamond scribe pen.

6.3.2 Shaping the Silicon

In order to be able to shape the thinned down Si layer, we need to first put a layer of e-
beam sensitive photoresist, write on the photoresist using Raith, and develop the resist.
The resist then acts as amask when we put the sample into a plasma etcher, either AMT
or P5000.

There are a couple options for the choice of photoresist. The main choice to be
made is whether to use positive or negative tone resist. Positive tone resist is removed
when it is exposed whereas negative tone resist is removed everywhere except where
the exposure takes place. The main positive tone resist used for e-beam lithography is
polymethylmethacrylate (ȝȚȚȎ), whereas Ma-N 2403⁵ is the negative tone one.

ȝȚȚȎ wasmore popular among the e-beam community at Ƞțȓ, therefore, we started
with the positive resist process. Our aim was to shape the silicon into a thin (∼ 50 − 60

⁵from Micro Resist Technology
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nm) and long (many μm) line for each device. To be able to achieve that end result using
ȝȚȚȎ one needs to etch away two large chunks of Si, spaced closely to each other. Our
first attempts at trying to expose two large rectangles of uniformbeamdosage, separated
by ∼ 50− 60 nm failed: the two rectangles merged with each other due to the proximity
effect seen in e-beam lithography—the scattering of electrons off of the substrate and
therefore a fattening of the exposed areas due to this scattering. Subsequently, we de-
cided to expose less where the line would form, and more at the peripheries, further
away from where the line would be. In order to achieve that, we exposed the rectan-
gular areas in line scans, progressively increasing the e-beam dosage as a function of
distance—parabolically in our case.

Until we found the right dosage conditions, we ran into various problems. In Figure
6.3 we show some ȠȒȚ images from our process development work. Whenwewere able
to pinpoint the right dosage and etching conditions, we could get much better results
as illustrated in Figure 6.4.

Figure 6.3 – ȝȚȚȎ based Si etch trials. The left picture shows an under exposed sample, and indi-
vidual line scans on the ȝȚȚȎ were visibly transferred onto the Si after the etch. The right picture
shows an interesting pattern which formed when we tried to form the Si line by vertical line scans
as opposed to the parallel scan case of the left picture.

Initially, we were using P5000 to etch Si. However, a long downtime in P5000 and
the subsequent changes in its etch characteristics made it very difficult to repeat the
results of Figure 6.4 after P5000 came back on-line. As a result, we decided to switch
to negative resist, and use Ma-N 2403 to define the thin long Si lines. The negative
resist process turned out to be much more repeatable. In Figure 6.5 we show an ȠȒȚ
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Figure 6.4 – Successful ȝȚȚȎ based Si etch when we found the right dosage condition. Note that
the edges of the Si line show the proximity effect non-idealities.

picture of a 60 nm wide Si line. Figure 6.6 shows a cross section ȠȒȚ image of a wider
line. Line edges are rougher than we would like, but the repeatability of the process led
us to stick with Ma-N.⁶

Figure 6.5 – Successful Si etch result using Ma-N resist.

⁶The astute reader who has looked into the details of the ȠȒȚ pictures we provide in this subsection
will realize that the dates on the ȠȒȚ images do not correlate well with the story told. That is, the etch
trial Figure 6.3 is dated later than the successful etch result Figure 6.4. In reality, it took us so much time
and effort to reproduce the previous success of the ȝȚȚȎ work, that as a result our failures were much
more glorious than those which took place during the initial process development, and hence our choice
of the more extraordinary, though anachronistic, ȠȒȚs to illustrate possible failures one could face.
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Figure 6.6 – Cross section ȠȒȚ image of a thick Si line.

6.3.3 Crowning the Silicon with a Golden Antenna

In order to be able to pull out the photo generated electron-hole pairs in Si, we need
to have an electrical contact to the Si line. Furthermore, we need to precisely align an
antenna element to the Si line to enhance the local field concentration in the vicinity of
the Si line in between the antenna arms. We use Raith to define both the metal contacts
and the antenna elements. We choose the positive ȝȚȚȎ resist since we would like
to minimize the amount of time spent on defining the shapes we want—it is much
quicker to draw the two arms of the dipole antenna than to draw the area to be carved
out.

The alignment problem is solved by writing alignment marks on the sample on the
first layer. Before the second layer is written, the electron beam used to shape patterns
on the surface, is scanned over the alignment marks to form an image around where
the alignment marks are expected. Then, from those images, the center point of each
of the alignment marks is deduced and that information is used to precisely calibrate
the location of the features on the surface—the features of the first layer—to what is to
be written on the second layer. In Figure 6.7, the cross shapes are the alignment marks
etched onto the Si layer. The rectangular, bright spots on the alignment marks are the
imaged areas before the second layer is written. There are two regions imaged permark,
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one horizontal and one vertical. The center locations of the vertical and horizontal scans
give the exact location of the center of the alignment mark. Knowing the centers of the
three out of four alignmentmarks that surround each device leads one to correct for any
deficiencies in the positioning of the sample to get a layer to layer alignment precision
of around 10 nm.

..

.Alignment mark

.Contact Pad

Figure 6.7 – Optical microscope image of an early prototype detector. The alignment marks are
shown with the cross shapes. The sample is coated with Au after the development of the second
layer resist. Lift-off will follow this step. Note the wrinkles on the Au layer which are due to the
degassing of the ȝȚȚȎ in the low pressure evaporation chamber of Innotec.

After the second layer e-beam step is completed, ȝȚȚȎ is developed and then the
sample is coated with gold. In between the two steps, it is important to bake the sample
at 90 ○C for 2 minutes so that no developer is left in the ȝȚȚȎ. Failure to do so leads
to degassing during the metal evaporation which manifests itself with poor film quality
following the deposition. The wrinkles in Figure 6.7 are a result of forgetting to bake
the sample after development. It is also important to set the parameters of Raith right,
otherwise, bizarre dosage problemsmight occur. One such example is shown in Figure
6.8 where the metal which was supposed to be a continuous film turned out to be a
collection of little dots. The problem here was the very large step size used when writing
areas with the e-beam: areas are written as a combination of a large number of ‘dots’
and if the dots are far away from each other they no longer form a continuum.
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Figure 6.8 – Bizarre metal dosage problem which led to a dot array instead of a continuous metal
film. The underlying pattern is that of a fingered metal-semiconductor-metal detector which we use
to debug our process flow.

Once all steps are done correctly, one gets very good alignment of the metal layer
to the underlying silicon. In Figure 6.9 we show an ȠȒȚ image of a sleeved dipole
structure. In Appendix D we provide a detailed recipe of our process flow. Now, though,
it is time to talk about the measurement setup.

6.4 Opto-Electronic Measurement Setup

After we fabricate our devices, we test them by shining light onto the detectors and
by measuring the photocurrent generated under various lighting and electrical biasing
conditions. The optical portion of the setup is an infrared microscope which allows
precise control over the polarization state of the laser light that illuminates the sample.
The electrical portion applies a voltage bias and measures the dark current as well as
the photocurrent. Due to the very small volume of the detector elements, proper shield-
ing of electrical connections turn out the be quite important. The mechanical part is
responsible for aligning the sample right at the peak intensity point of the illumination
region. In this section, wewill go through each portion (optical, electrical &mechanical)
and describe their properties.
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.Dipole antenna

.Sleeve contact .Si

.Oxide

Figure 6.9 – Long Si lines and the antenna with sleeves on the top. The bright parts are gold and
the horizontal line is Si. The underlying material is oxide.

6.4.1 Optics

The light source that we use is a titanium-sapphire solid state mode locked laser.⁷ The
laser is pulsed and the pulse width is on the order of 100 fs. Even though the laser is
tunable over a frequency range of roughly 800 − 900 nm, we mostly use the laser at a
fixed wavelength of 850 nm. In Figure 6.10, we sketch the optical setup. The laser light
is guided to the setup with dielectricmirrors, and then the beampasses through a Risley
prism pair. The Risley prism allows us to steer the beam to an arbitrary direction, and
we make use of the Risley prism to make sure that the beam enters at a normal angle
to the microscope lens.

After the Risley, the beam goes through a neutral density (țȑ) filter wheel that we
use to adjust the light intensity. Two non-polarizing beam splitters (țȝȏȠ) are then
used in the beam path for imaging through a charge-coupled device (ȐȐȑ) camera and
for illuminating the sample with an 850 nm infrared light emitting diode (șȒȑ). We
use a Tamron zoom lens to image the sample onto the ȐȐȑ. An 850 nm polarizer and a
matching half-wave (λ/2) plate fromMeadowlarkOptics is used to polarize and to rotate
the polarization state of the incoming light. We use a Mitutoyo M Plan Apo NIR ǶǴx

⁷More specifically, the mode locked laser is a Spectra Physics Tsunami model and it is pumped with
a Millenia series diode laser.
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long working distance objective lens to focus the light onto the sample. The objective
lens has a numerical aperture of 0.40. By focusing and de-focusing the laser spot, and
by adjusting the angular position of the beam the through the help of the Risley prisms,
we get a circular, stigmatization-free focused spot on the sample. We found that it was
best to set the polarization state of the beam right before the beam enters the objective
lens—bouncing the beam off of dielectric mirrors or letting the beam go through beam
splitters turned out to be detrimental to the polarization state of the light.

.

.

. . . . ..LED

. . . . . .Condenser Lens

..Laser .

.Risley Pair

.

.ND Filter

.
.NPBS

. .NPBS

. . . . . .Polarizer

. . . . . .λ/2 Plate

. . . ..Objective Lens . .Microscope Lens

. . . ..CCD . .Sample

Figure 6.10 – Optical setup used in the measurements. țȑ stands for neutral density, țȝȏȠ for
non-polarizing beam splitter, ȐȐȑ for charge-coupled device, șȒȑ for light-emitting diode.

6.4.2 Electronics

The electrical requirements are fairly simple: apply a voltage bias to the detector, and
measure its photo response. The catch is, due to the low levels of available photo re-
sponse of the detectors, noise elimination turns out to be quite important. In Figure
6.11 we sketch the electrical part of our measurement system. We use Model ǻǽ triaxial
probe holders and matching probe tips from Micromanipulator to electrically contact
the photodetectors. Measurement of the photocurrent requires us to use a lock-in am-
plifier⁸ to filter out the noise from the system. We use a mechanical chopper to chop

⁸Stanford Resarch Systems Model SRǼǷǴ
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Figure 6.11 – Serial electrical connection between the sample, the lock-in and the parameter analyzer
through the help of the triax-coax connector box.

the light, and feed the chopper frequency signal to the lock-in to filter out the noise.
We connect the monitor output of the lock-in to an audio spectrum analyzer⁹ to see the
noise spectrum of the electrical system and choose a chopping frequency near where
the noise is minimal. Voltage biasing of the sample is done through a parameter ana-
lyzer.¹⁰ The parameter analyzer has triaxial connectors whereas the lock-in has coaxial
(ȏțȐ type) inputs. We built a triax-coax shielded serial connection box to connect the
sample to both the parameter analyzer and the lock-in amplifier’s current input chan-
nel.¹¹ The parameter analyzer is also used to gate the detectors through the back of the
samples. We put the samples on an electrically isolated conducting tape, and connect
the tape to a voltage output channel of the parameter analyzer. Furthermore, the param-
eter analyzer is also used to measure the dark current as a function of applied voltage.
We wrote Matlab scripts to talk to the lock-in and the parameter analyzer through their
ȔȝȖȏ ports in order to set electrical biasing conditions, read the measurement results

⁹HP ǷǹǼǴA
¹⁰Agilent ǸǵǹǹC
¹¹The photo detectors have a very high impedance on the order of many gigaohms, and the low im-

pedance current input channel of the lock-in provides the lowest noise when making photo current mea-
surements. The parameter analyzer has a teraohm level voltage source impedance—much larger than
the photodetector impedance as required from a proper voltage source.
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and save the results in a human-readable ȎȠȐȖȖ data file.

6.4.3 Mechanics

All optical parts in Figure 6.10 are mounted on Linos Microbench opto-mechanical
components. The sample is held horizontally, and the beam is routed above the sample,
just as done in a regular microscope setup. The microscope objective is attached to a
turret, and the long working distance of the objective lens allows the probe holders
to contact the sample without interfering with the imaging properties of the optical
system. The sample is mounted on a piezo stage with 20 μm of travel in x̂, ŷ and ẑ
directions. The piezo stage itself sits on a Newport three axis mechanical translation
stage. Probe holders are attached to Rocker&Kolls Model ǸǸǼ manipulators and the
manipulators are attached on top of the piezo stage so that the sample can be moved by
the piezo while making measurements.¹² We used the machine shop to build various
parts used to attach different components together.¹³

6.5 Measurement Results and Discussion

We made measurements on different samples to electrically characterize the photo re-
sponse of our detectors under various illumination and biasing conditions. Our main
aim was to build a set of detectors with different antenna elements, or none at all, at-
tached to them and to measure their properties in order to have an electrical character-
ization scheme for photo detectors integrated with nano-metallic scatterers. We were
inherently assuming that comparison of different devices on the same sample and on
different samples would be simple to achieve. After all, we would be judiciously apply-
ing the same clean room techniques for fabricating our samples.

However, our initial attempts failed. After the subsequent literature surveys, we
realized that the devices we were making were very similar to the popular nanowire

¹²The piezo has a ǵ kg weight limit, and that led us to use very light manipulators. Rocker&Kolls ones
were the lightest we could find.
¹³We thank Mehmet Solyalı at the Varian Physics Machine Shop for teaching us the basics of machin-

ing.
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based structures—a plethora of papers are available on various properties of nanowires.

Due to the small diameter of the nanowires, the surface to volume ratio of devices
made out of nanowires is exceptionally high compared to bulk structures. Therefore,
many effects that could have previously been neglected become critical in understand-
ing the measured nanowire properties. Let us start with the current-voltage character-
istics and, in general, the transport of carriers within nanowire structures.

6.5.1 Transport

There are various techniques to electricallymeasure the properties of nanowires—many
of which are described in detail in [166]. Current-voltage measurements are one of the
easiest ways to test the quality of devices with nanowires. The properties of the nanowire
surfaces and the way in which contacts aremade to the nanowires have profound effects
on the current-voltage measurement results.

Surface States

As-grown nanowires are known to have dangling bonds on their surfaces which act as
charge traps. As charges are trapped on the surface, surface depletion takes place which
leads to band bending at the surface [167]. If nanowires are fabricated using a top-down
technique, such as e-beam lithography, surface effects are amplified due to the etching
process which results in roughness—therefore more carrier scattering—and sensitivity
to ambient conditions due to adsorption effects [168]. The most prominent signature
of surface effects is the hysteresis observed on current-voltage plots of nanowires.

In Figure 6.12 we show a typical current-voltage plot for a device as in Figure 6.9.
The current was limited to 100 nA, and the arrows in the figure show the direction of
the voltage sweep. As can be seen from the figure, scanning the voltage in different
directions lead to different current-voltage curves, a standard form of hysteresis.

One way to reduce the hysteresis is to oxidize the nanowires in order to decrease
the number of dangling bonds at the surface. The Si-oxide interface is well studied
for planar geometries and oxidation models for different crystal orientations have been
developed [169, Sec. 6.5.5]. It was found that the (100) direction of the Si crystal leads
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Figure 6.12 – Hysterisis in the dark current-voltage plot for a Si photo detector.

to the best Si-oxide interface, and thereforemost of today’s electronic circuitry use (100)
oriented wafers. However, for nanowires the situation ismore complicated. There is no
single crystal orientation on the surface, but rather, all different directions are present as
one circulates the wire radius. Indeed, oxidation was shown to anisotropically decrease
the radius of nanowires defined by e-beam lithography [170].

In the case of nanowires, oxidation rates were shown to be dependent on the wire
radius [171, 172]. Oxidation under the right conditions was shown to decrease the hys-
teresis effects [173]. Another way to eliminate the effects of hysteresis is to scan the
voltage in a very slow manner, so that the carriers trapped on the surface have enough
time to conclude their transport through the nanowire [174]. However, when we tried to
sweep the voltage slowly, we did not see a significant decrease in the hysteresis, which
suggests that the carrier lifetimes at the trapping sites of our samples are relatively long.
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Contacts

Most of the devices that we fabricated show back-to-back Schottky type contacts as can
also be inferred from Figure 6.12. However, a non-negligible number of the devices
showed a single-sided, diode-like current-voltage relationship. Such asymmetrical I-V
curves are also observed by others and are associated with the difference in the quality
of the contacts on both sides of the wire [175].

We tried to extract the contact resistance in our devices through the use of the 4-
point contact technique [176]. However, the fact that each contact significantly changes
the transport properties and that the 4-point technique works only for ohmic contacts
resulted in the failure of ourmeasurements. As quoted in [177], “a gated four-pointmea-
surement would not give the intrinsic țȤ resistivity because additional band bending
would be introduced at the inner contacts and thus the measurement would be cor-
rupted.” Nevertheless, contact resistance measurements were made by others through
the investigation of temperature dependence of I-V curves [178].

Schottky contacts to nanowires were investigated by different groups, and as quoted
in [179] it was seen that “electronic transport properties of nanoscale contacts can differ
significantly from those of their bulk counterparts.” For instance, for contacts smaller
than a characteristic size, reverse currents were shown to dominate the transport prop-
erties, fundamentally changing the Schottky characteristics [180, 181].

Gating nanowires through a non-conducting contact turns a nanowire geometry
into a field effect transistor (ȓȒȡ). The easiest way to gate a nanowire is to place the wire
on an oxidized silicon substrate and to use the substrate as the gate electrode. In the
case of lithographically defined nanowires, the same effect can be obtained by using
ȠȜȖ wafers. However, this type of gating is not the same as gating in regular ȓȒȡs, as
the gate also overlaps the source and drain regions, and affects the Schottky barrier
height [182]. Due to the possible presence of very high fields and associated large band
bending in nanowires, tunneling effects should also be taken into consideration in order
to calculate the transport properties [183, 184].

In Figure 6.13 we show the effects of gating on the current-voltage relationships on
one of our samples. Note that there is a micron thick oxide between the conduction
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Figure 6.13 – Effects of gating on the voltage-current relationship. Dashed line is the VG = 0 curve
where VG stands for the gate potential applied through the back of the carrier substrate.

channel and the position where the gate potential is applied.¹⁴ As can be seen from the
figure, we can tune the conductance in the channel region through the application of
the gate potential. Note that the hysteresis is still visible at various gating potentials.

Schottky-to-ohmic conversion of the contact characteristics through the help of an-
nealing was shown to be achievable in GaN nanowires [185]. For Si nanowires Ni was
shown to have lower contact resistance than Ti contacts, and annealing was seen to help
with the I-V characteristics [186]. Ion beam doping of nanowires was also tried, and it
was possible to get ohmic contacts—though hysteresis effects were seen to increase due
to induced defects during the doping process [187, 188].

Having large contact areas, especially when defining the nanowire geometry through
the use of e-beam lithography, seems to help with having reliable contacts both for back
gated ȓȒȡs [189] and ȓȒȡs gated from the top, within a limited region of the transport

¹⁴In reality, we apply the gate potential through the back of the carrier wafer which has the same low
doping as the active region. Therefore, it is very conceivable that some of the voltage drop occurs at the
∼ 500 μm thick carrier wafer.
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channel [190]. In these examples, the channel is in the form of a nanowire, and it
connects to large rectangular patches of contacts for the source and drain regions. For
large contact areas, doping of the source and drain regions becomes much easier and
size effects are minimized.

High fields within the nanowiresmay lead to depletion widths larger than the length
of the channel. At such high fields punchthrough occurs, and super linear I-V character-
istics can be observed—this is also called space charge limited current [191]. In [192, 193]
space-charge-limited current and the effects of trap levels on the I-V characteristics are
discussed in detail. One intriguing feature of space-charge-limited current is the way
in which it resembles avalanching. Temperature dependence of I-V characteristics is
one way to differentiate between these two different effects [194]. Lastly, it was shown
that ballistic transport and different scattering mechanisms can lead to kinks in the I-V
curves [195].

6.5.2 Photoresponse

Nanowire light absorption is polarization dependent [196]. When the electric field is
parallel to the wire, due to the continuity of tangential fields, the field inside and out-
side the nanowire are equivalent to each other. However, when the electric field is
perpendicular, this time the displacement field, D = єE, is continuous and since the
permittivity of the wire is larger than the surrounding environment, field inside the
wire will be less.

When we measured the photocurrent of our samples as a function of the applied
source-drain potential, we observed plots similar to those in Figure 6.14. In our mea-
surements, we apply polarized light to the device, move the device with the piezo stage
until the photo current reading is maximized at the lock-in and then sweep the voltage
to record the photo current as a function of drain-source voltage. Our detectors show
a strong polarization dependence: photocurrent is larger when light is polarized along
the long Si wire direction.

Contacts are shown to have profound effects on the photo response of nanowires.
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Figure 6.14 – Photocurrent as a function of parallel (∥) and perpendicular (⊥) polarization. VG = 0
in these plots. Inset shows the ratio of the two currents as a function of voltage.

When the contacts to the nanowire are of the Schottky-type, most of the applied source-
drain voltage drops across the reverse biased Schottky contact and the photo generated
electron-hole pairs in the vicinity of the reverse biased contact are efficiently swept [197].
However, those electron-hole pairs generated away from the reverse biased contact do
not observe significant fields and therefore they recombine before being swept away
[198].

We built test samples with only a long Si line (no antennas) connected at its both
ends to large metal pads. In Figure 6.15 we show the dark current as well as the pho-
tocurrent readings when we sweep the drain-source voltage at a fixed gate voltage of
VG = −50 V. From the figure we see typical Schottky-type photo current characteristics:
as the reverse bias across the junction increases, the photocurrent saturates to a maxi-
mal value, and at forward biases photocurrent is negligible. The hysteresis effect is also
visible in the figure.

Our main aim was to measure the antenna properties, and the antennas perform



134 ȐȕȎȝȡȒȟ 6. ȓȎȏȟȖȐȎȡȖȜț Ȏțȑ ȚȒȎȠȢȟȒȚȒțȡ ȟȒȠȢșȡȠ

.

.

.

.Left Pad Illumination

.Right Pad Illumination

.20× Dark Current

.−10 .−8 .−6 .−4 .−2 .0 .2 .4 .6 .8 .10

.−4

.−2

.0

.2

.4 .⋅10
−9

.

.Voltage (V)

.Cu
rr
en
t(
A
)

Figure 6.15 – Efects of contacts on photocurrent characteristics. A gate bias of VG = −50 V is applied.
The dark current is multiplied by 20 so as to make it visible in the plot.

best when the light polarization is parallel to the dipole arms, that is, perpendicular to
the Si nanowire that goes through the antenna gap region. Unfortunately, for those
detectors as shown in Figure 6.9 we did not observe a significant difference in the
ratio of the photocurrent due to light in orthogonal polarization directions. We got
similar figures as shown in the inset of Figure 6.14 for those samples with and without
antennas. There can be two reasons for this behavior: a) the effective Schottky contact
is away from the antenna, and therefore photo generated carriers near the vicinity of
the antenna are not collected, b) finite thickness of the metal layer on the Si nanowire is
not sufficient to block the light, and the photo current signal of the antenna is swamped
by the absorption through the microns-long nanowire section.

In order to decrease the inherent polarization dependence of the photo detectors
without antennas—so that when we put the antennas around the detector volume, an-
tenna effects would be easier to measure—we built samples with modified Si geome-
tries. In one set of devices, we reduced the length of the original Si line such that the
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line would only be couple hundred nm in length. Having a short Si line also reduces
the possibility of the nanowire photocurrent swamping the photocurrent due to the an-
tenna. Figure 6.16 shows the ȠȒȚ images of the samples with the short Si lines, with
and without antennas.

Figure 6.16 – Short Si detectors with an antenna (left) and without an antenna (right).

The photocurrent response of the short Si lines without antennas did still depend
on the polarization with varying degrees of strength. We were not able to conclusively
demonstrate the antenna effect due to the large variation in the current-voltage charac-
teristics both for darkmeasurements andmeasurements with light—reliably contacting
such a small volume of Si turned out to be a great challenge. However, some devices
did show quite promising results. In Figure 6.17 we plot the photocurrent response
of one of the short Si detectors as a function of light intensity. At high field values,
the photocurrent increases for a fixed light intensity, suggesting the presence of a gain
mechanism.

Different photo-induced gainmechanisms have been reported in the literature. One
mechanism is due to the surface band bending. When electron-hole pairs are gener-
ated by photons, due to the surface band bending, holes go towards the surface and get
trapped at the dangling bonds, whereas electrons go to the core of the nanowire. The
presence of holes on the surface effectively changes the gate potential of the wire (photo-
gating), whereas the electrons at the core act as extra dopants (photodoping) [199–202].
At high voltages, there is enough field away from the reverse biased Schottky contact
to sweep the photo generated carriers in the non-Schottky region away, and the gain
mechanism becomes observable on the I-V plots. Of course, another plausible expla-
nation is avalanching due to the presence of very large fields. Temperature dependent
current measurements can differentiate between the two possible explanations.
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Figure 6.17 – Photo current as a function of light intensity for short Si detectors. The labels show the
power in the light beam measured right after the țȑ filter wheel. Actual power that hits the sample
is roughly 10% of the measured power.

It is worthwhile mentioning that if we were to have ohmic contacts, then we would
not need to have the antenna element near where the reverse biased Schottky contact is.
As shown in [203], nanowires with ohmic contacts can have substantial photocurrent
even in the mid section of the wires, away from the contacts. And more interestingly,
the location of the maximum photocurrent contribution can be tuned by the choice of
the source-drain bias voltage. Furthermore, it was also shown that polarization depen-
dences of photocurrent generated at the reverse-biased Schottky regions and at regions
where the nanowire acts as a photoconductor (away from the reverse-biased Schottky
contact) are different [204].

Another set of devices that we fabricated had the long Si line turned into a circle as
shown in Figure 6.18. Our aim was to minimize the polarization dependence of the
Si nanowire to make the antenna contribution more visible. When we measured the
photo-current of the circularly shaped detector elements without any antennas, we ob-
served that the photocurrent did not depend on the polarization of the incoming light
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as we expected. However, those samples with antennas did not show any statistically
significant increase in the photocurrent. In our measurements, we first maximize the
photocurrent at a given polarization and then sweep the source-drain voltage to get
curves as in Figure 6.14. It is very likely that the maximum photocurrent position was
near where the reverse bias Schottky contact was, and thus we were not able to observe
the antenna enhanced photocurrent. If we were to have ohmic contacts we could cir-
cumvent this problem. Another possibility is to get photocurrent vs position images as
done for instance in [203] for different polarizations, and to calculate the ratio of two
images to see where the ratio would maximize. If the maximum location is where the
antenna is, then we will have showed what we were looking for.

Figure 6.18 – Circular detection element.

Lastly, we would like to briefly talk about the finite thickness of the oxide layer that
we had in our ȠȜȖ wafers. As elaborated in [205], choosing an oxide thickness that
minimizes the reflections of electromagnetic waves coming from the air side improves
antennas’ detection capabilities. In Figure 6.19 we plot the intensity reflection coeffi-
cient¹⁵ of a planewave coming from the air side to an air-oxide-Si three layer system. The
plane wave is coming perpendicularly to the surface. The calculation is made through
the use of the transfer matrix technique, though for a three layer system closed form
formulas also exist. We plotted the intensity reflection coefficient for two cases: one

¹⁵which is the magnitude square of the reflection coefficient for fields
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for the Si detectors designed to work around λ = 850 nm and another for the Ge-based
photodetectors of [165] which were resonant around λ = 1400 nm. As can be seen from
the figure, the reflection coefficient is close to minimum for 1 μm oxide thickness when
λ = 850 nm, but it is close to its maximal value for λ = 1400 nm. In all our designs, we
were assuming an infinite oxide thickness due to the limited computational power that
we had for our ȓȑȡȑ calculations. We observed the antenna effect on Ge based detectors
fabricated on 1 μm thick oxide. The fact that the reflection coefficients are at opposing
regimes for the 850 nm and the 1400 nm wavelengths for a fixed oxide thickness, sug-
gests that a thorough investigation of the antenna properties sitting on a finite oxide
thickness might prove useful.

.

.

.

.λ = 850 nm .λ = 1400 nm

.0 .100 .200 .300 .400 .500 .600 .700 .800 .900 .1,000.0

.0.1

.0.2

.0.3

.0.4

.0.5

.

.Oxide Thickness (nm)

.∣Γ
∣2

Figure 6.19 – Intensity reflection coefficient from an air-oxide-Si three layer system as a function of
oxide thickness. Solid curve is for λ = 850 nm and dashed curve is for λ = 1400 nm.



6.6. ȐȜțȐșȢȑȖțȔ ȟȒȚȎȟȘȠ 139

6.6 Concluding Remarks

In this chapter we summarized our efforts at fabricating and measuring antenna-in-
tegrated Si photodetectors using electron beam lithography, and compared and con-
trasted our results with the relevant literature on nanowire detectors and field effect
transistors. We were not able to conclusively show the antenna effect in photodetectors,
but throughout our efforts we believe we made progress on understanding the carrier
transport in and photo response of deep sub-wavelength volumes of Si. Surface effects
and contacts are critically important in understanding the properties of sub-wavelength
photodetectors. By appropriate surface passivation, and having ohmic contacts via dop-
ing and contact annealing, many of the problems we report in this section can poten-
tially be solved. Additionally, it would be very illuminating to have photocurrentmaps of
the detector geometries as a function of position, wavelength and polarization—which
is within our measurement capabilities—to be able to characterize the antenna inte-
grated photodetectors for near-infrared frequencies.
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Chapter 7

Conclusion

OȝȡȖȐȎș țȒȡȤȜȟȘȠ form the backbone of the communications infrastructure of the
world. The ability to send immense amounts of data through very long distances

withminimal loss is whatmakes it possible to watch videos online, listen to radio shows
on the other side of the planet and to discover new forms of self expression through the
creative technologies of the ‘information age.’ In addition to being able to send infor-
mation around, the capability to create new content, to process the generated data and
to store it indefinitely is crucially important to be able to taste the fruits of technology in
our daily lives—so that we can blog about various topics, look up Wikipedia when need
be, read the news, be a part of lively discussions on email lists etc.

On the information processing side, electronic circuitry in our gadgets is usingmore
and more energy to be able to communicate with the outer world. It now takes as
much—and sometimes evenmore—energy to send the information around by moving
electrons in the electrical cabling that connects to the switching transistors (also known
as the interconnect), as it does to process the information by switching transistors on
and off. The fact that we cannot cool the electronics fast enough, bounds the amount
of energy density that can be dissipated in a chip and therefore the speed of electronic
circuitry. Loosing a significant portion of the energy to heat in the transport of electrons
is one of the main factors that limit the speed of electronics.

The use of optics in the transfer of information is proliferating. Whereas previ-
ously it was only distances measured in thousands of kilometers—from one continent
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to another—between which it was economically feasible to use optics, advances in tech-
nology led to the use of optics to replace the electrical cables in the back-planes of high
speed switches used in today’s internet backbone. Could it be that we can also use op-
tics at shorter length scales, to connect chips to each other, or even, to send bits from
one corner of a single chip to the other? The question has long been on the agenda of
many, and the idea of using optics in ȐȚȜȠ compatible electronics is gaining a lot of
attention recently [206].

Successful integration of optics into electronics will have stringent requirements:
∼ 10 fJ/bit energy to transfer information, photodetectors with a couple femtofarads
of capacitance, clock rates of tens of GHz, a well understood and densely integrable
waveguide technology and wavelength-division multiplexing among others [9]. Fur-
thermore, modeling techniques that can potentially predict the collective operation of
millions of devices are crucial to be able to design complicated, multi functional opto-
electronic components.

We started this dissertation by analyzing different nano-metallic, i.e. plasmonic,
waveguide geometries that can be packed densely to each other. We focused on the
metal-insulator-metal (ȚȖȚ) geometry, and in detail analyzed the modes that the ȚȖȚ
waveguide supports. We showed that ȚȖȚ waveguide modes are a hybrid of the par-
allel plate and dielectric slab waveguide modes: they include an infinitely large set of
discrete modes as in the parallel plate case, in addition to a continuum set of modes
analogous to that of the dielectric slab’s. Deep subwavelength guiding properties of the
ȚȖȚ waveguides make them suitable for use in applications where light needs to be
focused to volumes similar to those of today’s transistors, tens of nanometer cubes.

We extended the mode-matching calculation technique, frequently used in the mi-
crowave domain, to analyze junctions of ȚȖȚ waveguides. Our understanding of the
modal properties of the ȚȖȚ structure was crucial in this respect. We then mapped
the modal scattering characteristics of ȚȖȚ junctions into a much simpler representa-
tion through the use of the scattering matrix approach. We showed how to analytically
design mode converters that can act as a bridge between the modes of conventional di-
electric waveguides and those of the deep subwavelength nano-metallic structures. We
illustrated how technologies of themicrowave domain can still be of great use for optical
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design through our use of various microwave concepts and methods such as the Smith
Chart and the development of an exact equivalent circuit for ȚȖȚ junctions. Conceptu-
alizing scattering of electromagnetic fields as equivalent voltages, currents and relevant
circuit parameters led us to significantly reduce the amount of time necessary to calcu-
late the coupling between ȚȖȚ waveguides.

We then switched gears, and shifted our focus to very low capacitance photodetec-
tors. In order to lower the capacitance, the semiconductor volume in the detector was
made even smaller than a cubic wavelength. When detectors are made so small, it be-
comes harder to get the light to couple to the detecting volume. We again borrowed
a concept from the microwave/radio-frequency domain and decided to surround the
detector volume by an antenna which would resonate at the wavelength of our laser,
around the 1300 nm band.

Properties of metals greatly change as the frequency of operation is tuned from
microwaves to the optical range of hundreds of THz. Design rules valid at microwave
frequencies need to be re-evaluated and modified for the optics regime. We designed
an antenna integrated photodetector, based on the topology of the open-sleeved dipole
frommicrowave frequencies. We used the sleeves to bias and to collect the photocurrent
generated at our deep subwavelength semiconductor volume positioned between the
arms of the dipole element. The dipole element resonated at the design wavelength
and concentrated light into the volume of the detector and hence enhanced the intrinsic
photo response of the detecting volume. We experimentally verified our simulation
results through the use of Ge on oxide samples with antennas on them, fabricated by
the help of the ȓȖȏ technique.

The last part of the dissertation focused on the experimental work we conducted.
Ge-based antenna integrated photodetectors showed a lot of variation from one sample
to another due to the annealing process wewere using to crystallize theGe. We switched
to Si, and used ȠȜȖ wafers as the starting material in our subsequent fabrication steps.
We used electron beam lithography and plasma etching to define the subwavelength
structures on our samples—and this time we fabricated designs which would resonate
around 850 nm, where Si still absorbs. In order to be able to test our devices, we built
opto-electronic measurement setups with precise control over the polarization state of
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light hitting the sample and with low noise electrical contacts so that we could measure
any small amount of photocurrent generated in our samples.

Effects related to the surface quality of the etched Si lines, and the properties of
contacts to small volumes of Si prevented us from making conclusive measurements
about the effects of antennas around Si detector volumes. However, we were able to fab-
ricate Schottky contact field effect transistors by back gating our samples. We observed
polarization dependent photocurrent from our samples. Furthermore, we fabricated
samples that would make it easier to observe the antenna effect: samples with a short
Si element, and those with a circular Si region. After developing the fabrication recipes
to reliably connect to small volumes of Si, and following an effective Si passivation, we
believe that we will be able to make more conclusive measurements.

During our work, some interesting questions occurred to us:

1. What are the architectural requirements for optical interconnects for chip to chip
connections? What sort of topologies would fit those requirements the best?

2. Antennas are useful for converting the energy in one mode of a waveguide to a
radiation mode directed in a specific direction. What is the shape of an antenna
that best matches the given optical mode of a laser for guiding the light into a
given mode of a specific waveguide?

3. What sort of fabrication techniques lead to reliable electrical connections to nan-
ometer scale volumes of silicon?

4. Nanowire geometries can easily be turned into field effect transistors by putting
a gate on the wires. Would it be possible to integrate such a transistor intimately
with a photodetector with antennas around it?

5. Would it be possible to take advantage of two-photon-absorption in Si to design
photodetectors that work at longer wavelengths?

6. How do confinement of carriers and field enhancement interact with each other?
If one were to build an antenna around a quantum dot, would it be possible to
tune the optical properties of the quantum dot in any way that is not possible
otherwise?
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It is our hope that this dissertation will contribute to the efforts to further the re-
search on optics of subwavelength geometries and devices. We look forward to learning
more about the subject matter, and wish that some of the questions raised above will
be answered soon.

Stanford, CA
September 2009
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Appendix A

Overview of Maxwell’s Equations for

Guided Modes

In this section, Maxwell’s equations will be summarized for the case of waveguides
with waves that propagate in the ẑ direction. Waveguides are formed by a permittivity
profile є(x , y) which is independent of z. Also є(x , y) is assumed to be a discontinuous
function of x and y composed of regions with fixed permittivity values. Therefore it is
possible to separate the field into transverse and longitudinal components asE = E⊥+ẑEz

and H = H⊥ + ẑHz. Furthermore, it is possible to decompose the gradient operator as
∇ = ∇⊥+ẑ∂z. With those definitions, one can get the following fromMaxwell’s equations
with the time harmonics dependence of e + jωt:

∇ ⋅D = 0↝ ∇ ⋅ E = 0↝∇⊥ ⋅ E⊥ + ∂zEz = 0

∇ ⋅B = 0↝ ∇ ⋅H = 0↝∇⊥ ⋅H⊥ + ∂zHz = 0

∇× E = −∂tB↝ ∇× E = − jωµH↝ẑ ⋅ (∇⊥ × E⊥) = − jωµHz

↝ẑ × (∂zE⊥ −∇⊥Ez) = − jωµH⊥
∇×H = ∂tD↝ ∇×H = jωєE↝ẑ ⋅ (∇⊥ ×H⊥) = jωєEz

↝ẑ × (∂zH⊥ −∇⊥Hz) = jωєE⊥
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Above equations are valid for all allowed electric andmagnetic fields inside the wave-
guides. For the specific case of modes of the structure (i.e. eigenvectors of the wave-
guide system) one can further simplify the equations by the transformation ∂z → − j βk

where βk is the propagation constant of themode in the ẑ direction. Since in the coupled
mode formulations one would want to distinguish between the permittivity profile of
the mode and the surrounding system, we will distinguish between them by explicitly
stating that the mode is for a permittivity profile of єk(x , y).

∇⊥ ⋅ Ek⊥ − j βkEkz =0

∇⊥ ⋅Hk⊥ − j βkHkz =0

ẑ ⋅ (∇⊥ × Ek⊥) = − jωµHkz

−ẑ × ( j βkEk⊥ +∇⊥Ekz) = − jωµHk⊥ (A.1)

ẑ ⋅ (∇⊥ ×Hk⊥) = jωєkEkz

−ẑ × ( j βkHk⊥ +∇⊥Hkz) = jωєkEk⊥ (A.2)

In general, it is possible to divide the modes of a system into two categories, ȡȒ
(Ez = 0) and ȡȚ (Hz = 0). By treating the longitudinal components (Ez, Hz) as source
terms one can come up with expressions for the transverse components solely based on
the longitudinal ones. With that inmind, we will furthermodify the above formulations
by making use of the vector identity A × (B × C) = B(A ⋅ C) − C(A ⋅ B). First take the
cross product of both sides of (A.2) with ẑ to get

j βkHk⊥ +∇⊥Hkz = jωєk(ẑ × Ek⊥). (A.3)

Rearranging the terms in (A.1) results in

− jωµHk⊥ − ẑ ×∇⊥Ekz = j βk(ẑ × Ek⊥). (A.4)

Multiplying both sides of (A.3) with j βk and substituting the expression for j βk(ẑ ×
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Ek⊥) from (A.4) results in

Hk⊥ =
−1
δk
( j βk∇⊥Hkz + jωєk ẑ ×∇⊥Ekz) (A.5)

where δk = ω2µєk − β2k. Similarly taking the cross product of (A.1) with ẑ, multiplying
the result with j βk and substituting the definition of j βk(ẑ ×Hk⊥) from (A.2) one gets

Ek⊥ =
1
δk
(− j βk∇⊥Ekz + jωµ ẑ ×∇⊥Hkz) .

As can be seen, we have now expressed transverse fields in terms of the longitudinal
components.



Appendix B

Argument Principle Method

In this section we will briefly describe the method we used to find the zeros of (3.8) and
(3.15). One of the main of problems of any root finding algorithm is the starting point
in the search domain. When the search needs to be done over two dimensions of the
complex plane, brute force approaches have limited applicability. Luckily, there have
been many advances in the root finding algorithms for waveguides [207–212].

If the function f (z)¹ is analytic, possesses no poles on and within the closed contour
C and finally if f (z) does not go to zero on C then:

N

∑
k=1

zmk =
1
2πi ∫∮C

zm
f ′(z)
f (z)

dz (B.1)

where zk denote the zeros of f (z) in C, N is the total number of zeros in C and m is
an arbitrary nonnegative integer. Specifically, for m = 0 one gets the total number of
zeros within C. Knowing the number of zeros in a closed region enables one to dismiss
regions of the complex search space in which there are no zeros. Furthermore, given
the number of zeros in a region, one can do a subdivision until there is only one zero
in the region of interest as described in [209]. For those regions with a single zero,
another contour integral as in (B.1) with m = 1 will give the location of the zero. If
better numerical accuracy is desired, one can do a local search given the approximate

¹The variable z in this appendix denotes an arbitrary complex number in the complex plane. It is not
the space coordinate.
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position obtained by the contour integration. This method of finding the zeros of a
function by repeated integration on the complex plane is called the argument principle
method (ȎȝȚ).

Note that for the ȎȝȚ to work, the function f (z) should be analytic in C. That re-
quires no branch points to exist in the closed contour. Our implementation takes κm
as the variable of interest. Equations (3.8) and (3.15) are rewritten in terms of only κm
by using (3.9). Singularities of tanh(κia) and of tanh(κmh) are removed by multiplying
both sides of (3.8) by cosh(κia) and of (3.15) by cosh(κia) cosh(κmh). At this stage the
equations look like:

єmκi sinh(κia) + єiκm cosh(κia) = 0 (B.2)

єmκi sinh(κia) cosh(κmh)+

єiκm cosh(κia) sinh(κmh) = 0
(B.3)

with κi =
√
κ2m − k20(єm − єi) where k0 = 2π/λ. The only branch points² are those caused

by the square root function in the definition of κi. Note that the function
√
z sinh(

√
z)

is single valued everywhere on the complex plane, since regardless of the choice for the
sign of the square root, the result does not change. Similarly cosh(

√
z) is single valued

due to the evenness of the hyperbolic cosine function. Therefore, (B.2) and (B.3) have
no branch points and are analytic in the whole complex plane.

In our implementation, we also did the conformal mapping κm = e z to map the
complex plane into strips. z = log(κm) ≡ log∣κm∣ + i arg(κm) = log∣κm∣ + i arg(κm) + i2πm
for any integer m. The logarithm function is multi-valued, and repeats itself in strips
that result from the i2πm term. For instance, when we are interested in finding proper
modes with Re(κm) > 0 we only need to search the strip −π/2 < Im(z) < π/2.

Lastly, using computer algebra systems that can do symbolic mathematical manipu-
lations, one can easily calculate f ′(z) from the definition of f (z) given by (B.2) or (B.3)
in addition to doing numerical integrations on the complex plane.

²The concept of Riemann surface is another way to look at the branch points of complex functions.
For instance, the square root function has a two-sheeted Riemann surface due to the two possible ways
of choosing the sign of the result. [212] visualizes and talks about Riemann surfaces.



Appendix C

Some Details of the Mode Matching

Algorithm

Once the full set of modes are found using ȎȝȚ, implementation of themode-matching
algorithm reduces to the calculation of the overlap integrals to build thematrix equation
that should be solved to get the reflection and transmission coefficients, Rkp and Tkp,
of (3.18)-(3.19). Since we have the analytical solutions for the fields as given in (3.7)
and (3.16), overlap integrals Ω(m){L,R} and [e

(m)
{L,R}∣h

(k)
{R,L}] can be calculated analytically in

closed form. The expressions are too long to reproduce here, but a computer algebra
system can do the analytical manipulations. Once we have closed form results for the
overlap integrals, formation of the matrix equation is very quick. The matrices have
relatively small sizes and the solution of the linear matrix equation proceeds quickly.
Also note that we numerically check the validity of the mode orthogonality condition
of (3.13) before we start the mode-matching calculations so as to check the correctness
of the ȎȝȚ implementation. We used Mathematica to implement ȎȝȚ and the mode-
matching method. The source code is available on the Internet under the ȔțȢ general
public license.
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Appendix D

Fabrication Recipe

1. ȠȜȖ silicon layer thinning

• Clean wafers at WBNonmetal by Piranha

• Clean wafers at WBDiff by a pre-diffusion clean

• First do wet and then dry oxidation at Thermco

• Measure oxide thickness by Woollam

• Do oxide etch using HF

• Repeat until desired Si thickness is reached

2. Cleave chips into pieces with roughly 1-1.5 cm sided squares

3. Clean for Layer 1 at WBNonmetal

• 9:1 H2SO4:H2O2 at 90 ○C for 20 minutes

• Rinse

• 50:1 HF for 30 sec

• Rinse & Dry

• YES Oven bake

4. Coating for Layer 1 at Headway
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• Coat Ma-D 2403 at 5000 rpm

• 90 ○C, 2 min bake

5. EBL for Layer 1 at Raith

• Before EBL do 90 ○C, 2 min bake

• Before login, set settings to default values

• Make sure Area Step Size and Line Step Size are as small as possible while
having a write speed less than 10 mm/sec

• In “Exposure Details” section, have exposure raster to be free metric raster
and click on the calculator button

• Also make sure that Area Mode is set to line

• Dosages are less than 80 for areas, around 230 for lines

• Save the protocol file after each session for logging purposes

6. Develop for Layer 1 at the e-beam wet bench

• Ma-D 532 for 40 sec

• DI Water for 5 min

• Blow Dry

7. Etching for Layer 1 at AMT. Modify the “Si Trench Etch” by copying program 1
into program 5 such that

• Pressure is 20 mT

• NF3 flow is 20 sccm

• Bias Setting is -430 Volts

• Set the etch to a long time (∼15 min) and visually confirm the bull’s eye clos-
ing pattern. Then wait for 10-20 secs more and stop the etch.

• After the etch, check the silicon thickness with Woollam.
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8. Clean for Layer 2 at WBNonMetal

• 9:1 H2SO4:H2O2 at 90 ○C for 20 minutes

• Rinse

• 50:1 HF for 30 sec

• Rinse & Dry

• 30 min Singe oven bake at 150○

9. Coating for Layer 2 at Headway

• 2% PMMA 950K at 1600 rpm

• 2 min, 200 °C bake

10. EBL for Layer 2 @ Raith

• Before EBL do 90 °C 2 min bake

• Before login, set settings to default values

• Make sure Area Step Size and Line Step Size are as small as possible while
having a write speed less than 10 mm/sec

• In Exposure Details section, have exposure raster to be freemetric raster and
click on the calculator button

• Make sure that Area Mode is set to line

• Save the protocol file after each session for logging purposes

11. Develop for Layer 1 at the e-beam wet bench

• 1:3 (MIBK:IPA) 30 sec

• IPA 30sec

• Blow dry

• Bake the sample at 90 °C for two minutes after develop for degassing to
enhance metal deposition on the surface.
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12. Metalization for Layer 2 at Innotec or by Tom Carver

• Do 5-6 secs of 20:1 BOE dip before evaporation, that etches the native oxide
on the silicon lines

• Deposit 5 nm Ti + 30 nm Au

13. Lift-off for Layer 2 at WBSolvent

• Remover PG 40-50 ○C 10 min

• Acetone flush

• Remover PG 40 ○C + Ultrasonic 10 min

• Acetone Room Temp + Ultrasonic 5 min

• IPA Room Temp + Ultrasonic 5 min

• Blow Dry



Bibliography

[1] K. Hyland, “Graduates’ gratitude: the generic structure of dissertation acknowledge-
ments,” English for Specific Purposes, vol. 23, no. 3, pp. 303 – 324, 2004.

[2] Wikipedia, “History of optics — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 13-July-2009]. http://en.wikipedia.org/w/index.php?title=History_
of_optics&oldid=301776825

[3] BBC Radio 4, “In our time: History of optics,” March 2007, [Online; ac-
cessed 9-September-2009]. http://www.bbc.co.uk/radio4/history/inourtime/
inourtime_20070301.shtml

[4] M. W. Davidson, “Sir David Brewster,” Lab Medicine, vol. 40, no. 9, pp. 563–564, 2009.

[5] D. Ihde, “Epistemology engines,” Nature, vol. 406, no. 6791, pp. 21–21, Jul 2000.

[6] J. Raskin, “The IronHeel at 100 - Jack London - the artist as ‘antenna of the race’,”Monthly
Review, vol. 59, no. 10, pp. 1–7, Mar 2008.

[7] J. Light, “When computers were women,” Technology and Culture, vol. 40, no. 3, pp.
455–483, Jul 1999.

[8] D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,”
Proceedings of the IEEE, vol. 88, no. 6, pp. 728–749, Jun 2000.

[9] D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceed-
ings of the IEEE, vol. 97, no. 7, pp. 1166–1185, July 2009.

[10] E. Özbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,”
Science, vol. 311, pp. 189–193, 2006.

[11] Şükrü Ekin Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and
coupling in metal-insulator-metal waveguides,” Physical Review B, vol. 79, no. 3, p.
035120, 2009.

[12] Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equiva-
lent circuit models for plasmonic waveguide components,” Selected Topics in Quantum
Electronics, IEEE Journal of, vol. 14, no. 6, pp. 1462–1472, Nov.-Dec. 2008.

[13] W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,”
Physical Review B, vol. 46, no. 20, p. 13592, Nov 1992.

157

http://en.wikipedia.org/w/index.php?title=History_of_optics&oldid=301776825
http://en.wikipedia.org/w/index.php?title=History_of_optics&oldid=301776825
http://www.bbc.co.uk/radio4/history/inourtime/inourtime_20070301.shtml
http://www.bbc.co.uk/radio4/history/inourtime/inourtime_20070301.shtml


158 ȏȖȏșȖȜȔȟȎȝȕȦ

[14] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles.
Wiley Science, 1983.

[15] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media.
Pergamon Press, 1984.

[16] E. D. Palik, Ed., Handbook of Optical Constants of Solids. Academic, New York, 1985.

[17] E. N. Economou, “Surface plasmons in thin films,” Physical Review, vol. 182, no. 2, pp.
539 – 54, 1969.

[18] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Thomson Learning, 1976.

[19] D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. San Diego, CA: Academic
Press, 1991.

[20] C. Davis and T. Tamir, “Bound waves in compressible plasma gaps,” International Journal
of Electronics, vol. 19, no. 4, pp. 323 – 342, UK 1966.

[21] C. Davis and T. Tamir, “Surface and interface waves in plasma gaps,” Journal of Applied
Physics, vol. 37, no. 1, pp. 461 – 462, 1966.

[22] T. Takano and J. Hamasaki, “Propagatingmodes of a metal-clad-dielectric-slab waveguide
for integrated optics,” IEEE Journal of Quantum Electronics, vol. 8, no. 2, pp. 206–212,
1972.

[23] I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides:
analytical and experimental study,” Applied Optics, vol. 13, no. 2, pp. 396 – 405, Feb 1974.

[24] B. Prade, J. Y. Vinet, and A.Mysyrowicz, “Guided optical waves in planar heterostructures
with negative dielectric constant,” Physical Review B, vol. 44, no. 24, pp. 13 556 – 72, Dec
1991.

[25] F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-
metal structures,” Phys. Rev. B, vol. 63, no. 16, p. 165103, Apr 2001.

[26] D.-K. Qing and G. Chen, “Nanoscale optical waveguides with negative dielectric
claddings,” Physical Review B, vol. 71, no. 15, p. 153107, 2005.

[27] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides:
Towards chip-scale propagation with subwavelength-scale localization,” Physical Review
B, vol. 73, no. 3, p. 035407, Jan 2006.

[28] P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very
efficient microscale-to-nanoscale interfacing,” Optics Letters, vol. 31, no. 22, pp. 3288 –
3290, Nov 2006.

[29] K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, “Light transmission along dispersive
plasmonic gap and its subwavelength guidance characteristics,” Opt. Express, vol. 14,
no. 1, pp. 320–330, 2006.

[30] R. Gordon, “Light in a subwavelength slit in ametal: propagation and reflection.” Physical
Review B, vol. 73, no. 15, p. 153405, 2006.



ȏȖȏșȖȜȔȟȎȝȕȦ 159

[31] E. Feigenbaum and M. Orenstein, “Modeling of complementary (void) plasmon waveg-
uiding,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2547 – 2562, September 2007.

[32] Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis
of optical properties,” Physical Review B, vol. 75, no. 3, p. 035411, Jan 2007.

[33] X. Wang and K. Kempa, “Plasmon polaritons in slot waveguides: Simple model
calculations and a full nonlocal quantum mechanical treatment,” Physical Review B,
vol. 75, no. 24, p. 245426, 2007.

[34] Z. J. Sun and D. Y. Zeng, “Coupling of surface plasmon waves in metal/dielectric gap
waveguides and single interface waveguides,” Journal of the Optical Society of America B:
Optical Physics, vol. 24, no. 11, pp. 2883 – 2887, November 2007.

[35] A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on
metallic surfaces,” Optics Express, vol. 15, no. 1, pp. 183 – 197, 2007.

[36] B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-
transmitting nanostructures,” Physical Review B, vol. 76, no. 12, p. 125104, 2007.

[37] T. Tamir and A. A. Oliner, “The spectrum of electromagnetic waves guided by a plasma
layer,” Proceedings of the IEEE, vol. 51, no. 2, pp. 317 – 332, 1963.

[38] C. R. Paiva and A. M. Barbosa, “Spectral representation of self-adjoint problems for
layered anisotropic waveguides,” IEEE Transactions on Microwave Theory and Techniques,
vol. 39, no. 2, pp. 330–338, Feb 1991.

[39] T. F. Jablonski, “Complex modes in open lossless dielectric waveguides,” Journal of the
Optical Society of America A (Optics and Image Science), vol. 11, no. 4, pp. 1272 –1282, Apr
1994.

[40] W. Shu and J. M. Song, “Complete mode spectrum of a grounded dielectric slab with
double negative metamaterials,” Progress in Electromagnetics Research, vol. 65, pp. 103 –
123, 2006.

[41] K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, “Guided mode propagations of grounded
double-positive and double-negative metamaterial slabs with arbitrary material indexes,”
Journal of the Korean Physical Society, vol. 49, no. 2, pp. 577 – 584, 2006.

[42] B. Friedman, Principles and Techniques of Applied Mathematics. New York: Dover Publi-
cations, 1990, reprint of 1956 ed.

[43] W. C. Chew,Waves and Fields in InhomogenousMedia. New York: VanNostrand Reinhold,
1990.

[44] E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley & Sons, 1978.

[45] G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics. New York:
Springer-Verlag, 2002.

[46] J. Locker, Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators. American
Mathematical Society, 2000.



160 ȏȖȏșȖȜȔȟȎȝȕȦ

[47] R. V. Churchill, Fourier Series and Boundary Value Problems. New York: McGraw-Hill
Book Company, 1941.

[48] A. Zettl, Sturm-Liouville Theory. American Mathematical Society, 2005.

[49] R. Richardson, “Contributions to the study of oscillation properties of the solutions of lin-
ear differential equations of the second order,” American Journal of Mathematics, vol. 40,
no. 3, pp. 283–316, 1918.

[50] A. Mostafazadeh, “Pseudo-hermiticity versus PT-symmetry III: Equivalence of pseudo-
hermiticity and the presence of antilinear symmetries,” Journal of Mathematical Physics,
vol. 43, no. 8, pp. 3944 – 3951, Aug 2002.

[51] A. Mostafazadeh and F. Loran, “Propagation of electromagnetic waves in linear media
and pseudo-hermiticity,” EPL, vol. 81, no. 1, p. 10007, 2008.

[52] M. Mrozowski, Guided Electromagnetic Waves. UK: Research Studies Press, 1997.

[53] E. B. Davies, “Non-self-adjoint differential operators,” Bulletin of the London Mathematical
Society, vol. 34, pp. 513 – 532, Sep 2002.

[54] V. V. Shevchenko, Continuous Transitions in OpenWaveguides. Boulder, Colorado: Golem
Press, 1971.

[55] T. Rozzi and M. Mongiardo, Open Electromagnetic Waveguides. The Institution of Elec-
trical Engineers, 1997.

[56] D. A. B. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge University
Press, 2008.

[57] R. E. Collin, Field Theory of Guided Waves, 2nd ed. Wiley-Interscience, 1991.

[58] A. Kostenbauder, Y. Sun, and A. Siegman, “Eigenmode expansions using biorthogonal
functions: complex-valued HermiteGaussians,” Journal of the Optical Society of America
A, vol. 14, no. 8, pp. 1780–1790, 1997.

[59] C. R. MacCluer and Y. Chait, “Choosing an inner product that separates variables,”
SIAM Review, vol. 33, no. 3, pp. 467–471, 1991.

[60] V. V. Shevchenko, “Forward and backward waves: three definitions and their interrelation
and applicability,” Physics-Uspekhi, vol. 50, no. 3, pp. 287 – 292, March 2007.

[61] H. J. Hagemann,W. Gudat, and C. Kunz, “Optical constants from the far infrared to the X-
ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3.” Journal of the Optical Society of America,
vol. 65, pp. 742–744, 1975.

[62] P. J. B. Clarricoats and K. R. Slinn, “Numerical solution of waveguide-discontinuity prob-
lems,” Proceedings of the Institution of Electrical Engineers, vol. 114, pp. 878–887, 1967.

[63] P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic compo-
nents,” Ph.D. dissertation, Ghent University, 2001.

[64] I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radi-
ation in slab waveguides,” Journal of the Optical Society of America A-Optics Image Science
And Vision, vol. 23, no. 8, pp. 1971–1977, Aug. 2006.



ȏȖȏșȖȜȔȟȎȝȕȦ 161

[65] I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton
mode cutoff and radiation in embedded strip waveguides,” Journal of Applied Physics, vol.
100, p. 043104, 2006.

[66] R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons
at abrupt surface interfaces: Implications for nanoscale cavities,” Physical Review B,
vol. 76, no. 3, p. 035408, 2007.

[67] R. Bousso and J. Polchinski, “Quantization of four-form fluxes and dynamical neutral-
ization of the cosmological constant,” Journal of High Energy Physics, vol. 2000, p. 006,
2000.

[68] L. P. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. IEEE Press, 1994.

[69] K. A. Zaki, C. Seng-Woon, and C. Chunming, “Modeling discontinuities in dielectric-
loaded waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. 36,
no. 12, pp. 1804 – 1810, Dec 1988.

[70] A. S. Omar and K. Schunemann, “Complex and backward-wave modes in inhomoge-
neously and anisotropically filled waveguides,” IEEE Transactions on Microwave Theory
and Techniques, vol. 35, pp. 268–275, 1987.

[71] A. S. Omar and K. Schunemann, “Formulation of the singular integral-equation
technique for planar transmission-lines,” IEEE Transactions on Microwave Theory and
Techniques, vol. 33, no. 12, pp. 1313 – 1322, Dec 1985.

[72] A. S. Omar and K. F. Schunemann, “The effect of complex modes at finline
discontinuities,” IEEE Transactions on Microwave Theory and Techniques, vol. 34, no. 12,
pp. 1508 – 1514, 1986.

[73] B. Sturman, E. Podivilov, andM.Gorkunov, “Eigenmodes for the problemof extraordinary
light transmission through subwavelength holes,” EPL, vol. 79, no. 2, p. 24002, 2007.

[74] B. Sturman, E. Podivilov, and M. Gorkunov, “Theory of extraordinary light transmission
through arrays of subwavelength slits,” Physical Review B, vol. 77, no. 7, p. 075106, 2008.

[75] G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz, “Some important
properties of waveguide junction generalized scattering matrices in the context of the
mode matching technique,” IEEE Transactions on Microwave Theory and Techniques,
vol. 42, no. 10, pp. 1896 – 1903, Oct 1994.

[76] G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength
plasmonic waveguides,” Applied Physics Letters, vol. 87, p. 131102, 2005.

[77] A. K. Bhattacharyya, “On the convergence of MoM and mode matching solutions for
infinite array and waveguide problems,” IEEE Transactions on Antennas and Propagation,
vol. 51, no. 7, pp. 1599 – 1606, July 2003.

[78] S.W. Lee,W. R. Jones, and J. J. Campbell, “Convergence of numerical solutions of iris-type
discontinuity problems,” IEEE Transactions on Microwave Theory and Techniques, vol. 19,
no. 6, pp. 528 – 536, 1971.



162 ȏȖȏșȖȜȔȟȎȝȕȦ

[79] M. Leroy, “On the convergence of numerical results inmodal analysis,” IEEE Transactions
on Antennas and Propagation, vol. 31, no. 4, pp. 655–659, Jul 1983.

[80] R. Mittra, T. Itoh, and T.-S. Li, “Analytical and numerical studies of the relative con-
vergence phenomenon arising in the solution of an integral equation by the moment
method,” IEEE Transactions on Microwave Theory and Techniques, vol. 20, no. 2, pp. 96 –
104, Feb 1972.

[81] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the
Plasmon Response of Complex Nanostructures,” Science, vol. 302, pp. 419–422, 2003.

[82] I. Kay and H. Moses, “Reflectionless Transmission through Dielectrics and Scattering
Potentials,” Journal of Applied Physics, vol. 27, p. 1503, 1956.

[83] J. Lekner, Theory of Reflection. Hingham, MA: Kluwer Academic Publishers, 1987.

[84] C. Siewert, “Explicit results for the quantum-mechanical energy states basic to a finite
square-well potential,” Journal of Mathematical Physics, vol. 19, p. 434, 1978.

[85] P. Paul and D. Nkemzi, “On the energy levels of a finite square-well potential,” Journal of
Mathematical Physics, vol. 41, p. 4551, 2000.

[86] R. Blümel, “Analytical solution of the finite quantum square-well problem,” J. Phys. A:
Math. Gen, vol. 38, no. 42, pp. L673–L678, 2005.

[87] Z. Ahmed, “Reflection from an interface,” Journal of Physics A: Mathematical and General,
vol. 33, no. 16, pp. 3161–3172, 2000.

[88] C. M. Bender, “Making sense of non-hermitian hamiltonians,” Reports on Progress in
Physics, vol. 70, no. 6, pp. 947–1018, 2007.

[89] F. S. H.B. Geyer, W.D. Heiss, “Non-hermitian hamiltonians, metric, other observables
and physical implications,” 2008, arXiv:0710.5593v1 [quant-ph].

[90] M. T. David Krejcirik, “Non-hermitian spectral effects in a PT -symmetric waveguide,”
Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 24, p. 244013, 2008.

[91] S. Albeverio, U. Guenther, and S. Kuzhel, “ j-self-adjoint operators with C-symmetries:
extension theory approach,” arXiv:0811.0365 [math-ph].

[92] S. Kuzhel, “On pseudo-hermitian operators with generalized C-symmetries,” arXiv:-
0802.4269 [math-ph].

[93] D. Williams, B. Alpert, U. Arz, D. Walker, and H. Grabinski, “Causal characteristic im-
pedance of planar transmission lines,” Advanced Packaging, IEEE Transactions on, vol. 26,
no. 2, pp. 165–171, 2003.

[94] M. Haakestad and J. Skaar, “Causality and Kramers-Kronig relations for waveguides,”
Optics Express, vol. 13, no. 24, pp. 9922–9934, 2005.

[95] F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W.
Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber,
and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature
Physics, vol. 3, no. 5, pp. 324 – 328, May 2007.



ȏȖȏșȖȜȔȟȎȝȕȦ 163

[96] E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field
visualization of strongly confined surface plasmon polaritons in metal–insulator–metal
waveguides,” Nano Letters, vol. 8, no. 9, pp. 2925–2929, 2008.

[97] J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index
materials achievable with surface plasmon waveguides? A case study of three plasmonic
geometries,” Opt. Express, vol. 16, no. 23, pp. 19 001–19017, 2008.

[98] V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near
a nanofiber,” Phys. Rev. A, vol. 69, no. 1, p. 013812, Jan 2004.

[99] D. E. Chang, A. S. S. rensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with
surface plasmons,” Physical Review Letters, vol. 97, no. 5, p. 053002, 2006.

[100] D. Chang, A. Sørensen, E. Demler, and M. Lukin, “A single-photon transistor using
nanoscale surface plasmons,” Nature Physics, vol. 3, pp. 807–812, 2007.

[101] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant
enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide
structures,” Physical Review B, vol. 78, no. 15, p. 153111, 2008.

[102] F. Intravaia and A. Lambrecht, “Surface plasmonmodes and the casimir energy,” Physical
Review Letters, vol. 94, no. 11, p. 110404, 2005.

[103] F. Capasso, J. Munday, D. Iannuzzi, and H. Chan, “Casimir forces and quantum electro-
dynamical torques: Physics and nanomechanics,” Selected Topics in Quantum Electronics,
IEEE Journal of, vol. 13, no. 2, pp. 400–414, March-April 2007.

[104] S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,”
Optics Express, vol. 15, no. 7, pp. 4310 – 4320, Apr 2007.

[105] F. M. Kong, K. Li, B. I. Wu, H. Huang, H. S. Chen, and J. A. Kong, “Propagation
properties of the spp modes in nanoscale narrow metallic gap, channel, and hole
geometries,” Progress in Electromagnetics Research, vol. 76, pp. 449 – 466, 2007.

[106] F. M. Kong, B. I. Wu, H. S. Chen, and J. A. Kong, “Surface plasmon mode analysis of
nanoscale metallic rectangular waveguide,” Optics Express, vol. 15, no. 19, pp. 12 331 –
12 337, Sep 2007.

[107] M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic
tapered rods in the presence of dissipation,” Physics Letters A, vol. 363, no. 5-6, pp. 507 –
511, Apr 2007.

[108] A. A. Oliner, “Historical perspectives on microwave field theory,” IEEE Transactions on
Microwave Theory and Techniques, vol. 32, no. 9, pp. 1022 – 1045, Sep 1984.

[109] S. A. Schelkunoff, “Forty years ago: Maxwell’s theory invades engineering-and grows with
it,” IEEE Transactions on Antennas and Propagation, vol. 18, no. 3, pp. 309–322, 1970.

[110] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, “Improving
themismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett., vol. 94, no. 1, p. 017402, Jan 2005.



164 ȏȖȏșȖȜȔȟȎȝȕȦ

[111] A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed
metamaterials in the infrared and visible regimes,” Journal of the Optical Society of America
B (Optical Physics), vol. 23, no. 3, pp. 571 – 583, March 2006.

[112] N. Engheta, “Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by
Metamaterials,” Science, vol. 317, no. 5845, pp. 1698–1702, 2007.

[113] A. I. Csurgay and W. Porod, “Surface plasmon waves in nanoelectronic circuits,” Inter-
national Journal of Circuit Theory and Applications, vol. 32, no. 5, pp. 339–361, September-
October 2004.

[114] A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter
using plasmonic nanostrip waveguides,” Opt. Express, vol. 15, no. 23, pp. 15 280–15 286,
2007.

[115] A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for
metal-insulator-metal plasmonic bragg reflectors,” Optics Express, vol. 16, no. 3, pp. 1475
– 1480, Feb 2008.

[116] E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic
X-junctions,” Optics Express, vol. 15, no. 26, pp. 17 948 – 17 953, Dec 2007.

[117] Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength wave-
guides and an ultra-compact power splitter,” Optics Communications, vol. 278, no. 1, pp.
199–203, Oct. 2007.

[118] K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface
plasmon polariton gap waveguide,” Applied Physics Letters, vol. 82, no. 8, pp. 1158–1160,
Feb. 2003.

[119] G. Veronis and S. H. Fan, “Theoretical investigation of compact couplers between dielec-
tric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,”
Optics Express, vol. 15, no. 3, pp. 1211 – 1221, Feb 2007.

[120] J. R. Whinnery and H. W. Jamieson, “Equivalent circuits for discontinuities in transmis-
sion lines,” Institute of Radio Engineers – Proceedings, vol. 32, no. 2, pp. 98 – 114, Feb 1944.

[121] H. A. Jamid and S. J. AlBader, “Reflection and transmission of surface plasmon mode at
a step discontinuity,” IEEE Photonics Technology Letters, vol. 9, no. 2, pp. 220 – 222, Feb
1997.

[122] P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: From micro to nano
scale with λ/4 impedance matching,” Optics Express, vol. 15, no. 11, pp. 6762 – 6767, May
2007.

[123] J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez,
and A. L. Baudrion, “Near-field characterization of bragg mirrors engraved in surface
plasmon waveguides,” Physical Review B, vol. 70, no. 23, p. 235406, 2004.

[124] C. Girard, “Near fields in nanostructures,” Reports on Progress in Physics, vol. 68, no. 8,
pp. 1883 – 1933, Aug 2005.



ȏȖȏșȖȜȔȟȎȝȕȦ 165

[125] D. M. Pozar, Microwave Engineering. Addison-Wesley, 1990, ch. Microwave Network
Analysis, pp. 220–234.

[126] S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics,
3rd ed. John Wiley & Sons, 1994.

[127] C. Montgomery, R. Dicke, and E. Purcell, Principles of Microwave Circuits. Peter Peregri-
nus Ltd., London, UK, 1987, reprint of the first publication in 1948 by the McGraw-Hill
Book Company Inc.

[128] P. A. Rizzi,Microwave Engineering, Passive Circuits. Prentice Hall, 1988.
[129] R. E. Collin, Field Theory of Guided Waves, 2nd ed. Wiley-Interscience-IEEE, 1991, ch. 8,

pp. 581–588.
[130] R. E. Collin, Foundations for Microwave Engineering. McGraw-Hill Book Company, 1966.
[131] P. H. Smith, Electronic Applications of the Smith Chart inWaveguide, Circuit and Component

Analysis. Robert E. Krieger Publishing Company, 1983.
[132] E. L. Ginzton, Microwave Measurements. McGraw-Hill Book Company Inc., 1957, ch.

Representation and Measurement of Microwave Circuits, pp. 313–345.
[133] N. Marcuvitz, Ed.,Waveguide Handbook, ser. Radiation Laboratory series. McGraw-Hill,

1951, vol. 10.
[134] J. Schwinger and D. S. Saxon, Discontinuities in Waveguides. Gordon and Breach Science

Publishers Inc., 1968, ch. 5, pp. 99–124.
[135] L. Lewin, Advanced Theory of Waveguides. Iliffe & Sons Ltd., 1951, ch. 5, pp. 98–106.
[136] T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Total light absorption in plasmonic

nanostructures,” Journal OfOptics A-Pure AndAppliedOptics, vol. 9, no. 9, pp. S458–S462,
Sep. 2007.

[137] S. J. Garner, D. V. Thiel, and S. G. OKeefe, “Surface impedance time domain reflectometry
for the determination of ice depth,” Geophysical Research Letters, vol. 24, no. 13, pp. 1599
– 1602, Jul 1997.

[138] SPICE. Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/SPICE
[139] HSPICE® Signal Integrity User Guide, Z-2007.03 ed., Synopsys, March 2007, ch. S-

parameter Modeling Using the S-element.
[140] G. Veronis and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” Journal

of Lightwave Technology, vol. 25, no. 9, pp. 2511 – 21, September 2007.
[141] S. Silver, Ed., Microwave antenna theory and design, ser. Radiation Laboratory series.

McGraw-Hill, 1949, vol. 12.
[142] W. L. Stutzman and G. A. Thiele, Antenna theory and design, 2nd ed. Wiley, 1998.
[143] R. E. Collin, Antennas and Radiowave Propagation. McGraw-Hill Book Company, 1985.
[144] D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for

plasmonic metal slot waveguides,” Selected Topics in Quantum Electronics, IEEE Journal of,
vol. 14, no. 6, pp. 1473–1478, Nov.-Dec. 2008.

http://en.wikipedia.org/wiki/SPICE


166 ȏȖȏșȖȜȔȟȎȝȕȦ

[145] P. Lilienfeld, “Gustav Mie: the person,” Appl. Opt., vol. 30, no. 33, pp. 4696–4698, 1991.

[146] D. J. Segelstein, “The complex refractive index of water,” Master’s thesis, University of
Missouri, Kansas City, 1981.

[147] J. D. Jackson, Classical electrodynamics, 3rd ed. Wiley, 1999.

[148] D.-S. Wang, “Limits and validity of the impedance boundary condition on penetrable sur-
faces,” Antennas and Propagation, IEEE Transactions on, vol. 35, no. 4, pp. 453–457, Apr
1987.

[149] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary
shape,” Antennas and Propagation, IEEE Transactions on, vol. 30, no. 3, pp. 409–418, May
1982.

[150] B. Jung, T. Sarkar, and Y. Chung, “A survey of various frequency domain integral equa-
tions for the analysis of scattering from three-dimensional dielectric objects,” Journal of
Electromagnetic Waves and Applications, vol. 16, no. 10, pp. 1419–1421, 2002.

[151] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd ed. Artech House, 2005.

[152] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equa-
tions in isotropic media,” Antennas and Propagation, IEEE Transactions on, vol. 14, no. 3,
pp. 302–307, May 1966.

[153] C. A. Balanis, Advanced engineering electromagnetics. Wiley, 1989.

[154] M. Watts and R. Diaz, “Perfect plane-wave injection into a finite FDTD domain through
teleportation of fields,” Electromagnetics, vol. 23, no. 2, pp. 187–201, 2003.

[155] Q. Wei, F. Liu, L. Xia, and S. Crozier, “An object-oriented designed finite-difference
time-domain simulator for electromagnetic analysis and design in MRI–applications to
high field analyses,” Journal of Magnetic Resonance, vol. 172, no. 2, pp. 222–230, 2005.

[156] M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the
green’s tensor for stratified media,” Phys. Rev. E, vol. 62, no. 4, pp. 5797–5807, Oct 2000.

[157] M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a
green’s tensor approach,” J. Opt. Soc. Am. A, vol. 18, no. 4, pp. 854–861, 2001.

[158] H. Fischer andO.Martin, “Engineering the optical response of plasmonic nanoantennas,”
Optics Express, vol. 16, no. 12, pp. 9144–9154, 2008.

[159] S. Frickel and N. Gross, “A general theory of scientific/intellectual movements,” American
Sociological Review, vol. 70, no. 2, pp. 204–232, Apr 2005.

[160] D. Jackson and N. Alexopoulos, “Analysis of planar strip geometries in a substrate-
superstrate configuration,”Antennas and Propagation, IEEETransactions on, vol. 34, no. 12,
pp. 1430–1438, Dec 1986.

[161] M. Kominami, D. Pozar, and D. Schaubert, “Dipole and slot elements and arrays on semi-
infinite substrates,” Antennas and Propagation, IEEE Transactions on, vol. 33, no. 6, pp.
600–607, Jun 1985.



ȏȖȏșȖȜȔȟȎȝȕȦ 167

[162] K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of
uniform arrays of gold nanorods to dielectric environment,” The Journal of Physical
Chemistry C, vol. 111, no. 11, pp. 4180–4184, Mar 2007.

[163] H. King and J. Wong, “An experimental study of a balun-fed open-sleeve dipole in front
of a metallic reflector,” Antennas and Propagation, IEEE Transactions on, vol. 20, no. 2, pp.
201–204, Mar 1972.

[164] A. Rakic, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of metallic films for
vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, no. 22, pp. 5271–5283, 1998.

[165] L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B.
Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole
antenna,” Nature Photonics, vol. 2, no. 4, pp. 226–229, Apr. 2008.

[166] A. Cavallini and L. Polenta, Characterization of Semiconductor Heterostructures and
Nanostructures. Elsevier, 2008, ch. Electrical characterization of nanostructures, pp.
55–91.

[167] V. Schmidt, S. Senz, and U. Goesele, “Influence of the Si/SiO2 interface on the charge
carrier density of si nanowires,” Applied Physics A-Materials Science & Processing, vol. 86,
no. 2, pp. 187–191, Feb 2007.

[168] J. Jie, W. Zhang, K. Peng, G. Yuan, C. S. Lee, and S.-T. Lee, “Surface-dominated trans-
port properties of silicon nanowires,” Advanced Functional Materials, vol. 18, no. 20, pp.
3251–3257, Oct 23 2008.

[169] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI technology : fundamentals, prac-
tice, and modeling. Upper Saddle River, NJ: Prentice Hall, 2000.

[170] J. Kedzierski, J. Bokor, and C. Kisielowski, “Fabrication of planar silicon nanowires on
silicon-on-insulator using stress limited oxidation,” J. Vac. Sci. Technol. B, vol. 15, no. 6,
pp. 2825–2828, 1997.

[171] C. C. Büttner and M. Zacharias, “Retarded oxidation of Si nanowires,” Applied Physics
Letters, vol. 89, no. 26, p. 263106, 2006.

[172] D. Shir, B. Liu, A. Mohammad, K. Lew, and S. Mohney, “Oxidation of silicon nanowires,”
Journal of Vacuum Science & Technology B, vol. 24, no. 3, pp. 1333–1336, May-Jun 2006.

[173] B. Liu, Y. Wang, T. ta Ho, K.-K. Lew, S. M. Eichfeld, J. M. Redwing, T. S. Mayer, and S. E.
Mohney, “Oxidation of silicon nanowires for top-gated field effect transistors,” Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 26, no. 3, pp. 370–374,
2008.

[174] S. A. Dayeh, C. Soci, P. K. L. Yu, E. T. Yu, and D. Wang, “Transport properties of InAs
nanowire field effect transistors: The effects of surface states,” Journal of Vacuum Science
& Technology B, vol. 25, no. 4, pp. 1432–1436, Jul-Aug 2007.

[175] G. Cheng, Z. Li, S. Wang, H. Gong, K. Cheng, X. Jiang, S. Zhou, Z. Du, T. Cui, and
G. Zou, “The unsaturated photocurrent controlled by two-dimensional barrier geometry



168 ȏȖȏșȖȜȔȟȎȝȕȦ

of a single ZnO nanowire Schottky photodiode,” Applied Physics Letters, vol. 93, no. 12, p.
123103, 2008.

[176] D. K. Schroder, Semiconductor material and device characterization. IEEE Press ; Wiley,
2006.

[177] W. M. Weber, L. Geelhaar, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau,
W. Pamler, C. Cheze, H. Riechert, P. Lugli, and F. Kreupl, “Silicon-nanowire transistors
with intruded nickel-silicide contacts,” Nano Letters, vol. 6, no. 12, pp. 2660–2666,
2006.

[178] Y.-F. Lin andW.-B. Jian, “The impact of nanocontact on nanowire based nanoelectronics,”
Nano Letters, vol. 8, no. 10, pp. 3146–3150, 2008.

[179] F. Léonard, A. A. Talin, B. S. Swartzentruber, and S. T. Picraux, “Diameter-dependent
electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes,” Physical
Review Letters, vol. 102, no. 10, p. 106805, 2009.

[180] G. D. J. Smit, S. Rogge, and T. M. Klapwijk, “Scaling of nano-Schottky-diodes,” Applied
Physics Letters, vol. 81, no. 20, pp. 3852–3854, 2002.

[181] J. Piscator and O. Engström, “Schottky barriers on silicon nanowires influenced by
charge configuration,” Journal of Applied Physics, vol. 104, no. 5, p. 054515, 2008.

[182] J. Appenzeller, J. Knoch, M. Bjork, H. Riel, H. Schmid, and W. Riess, “Toward nanowire
electronics,” Electron Devices, IEEE Transactions on, vol. 55, no. 11, pp. 2827–2845, Nov.
2008.

[183] Z. Y. Zhang, C. H. Jin, X. L. Liang, Q. Chen, and L.-M. Peng, “Current-voltage
characteristics and parameter retrieval of semiconducting nanowires,” Applied Physics
Letters, vol. 88, no. 7, p. 073102, 2006.

[184] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, and L.-M. Peng, “Quantitative analysis
of current-voltage characteristics of semiconducting nanowires: Decoupling of contact
effects,” Advanced Functional Materials, vol. 17, no. 14, pp. 2478–2489, Sep 24 2007.

[185] R. Agarwal, “Heterointerfaces in semiconductor nanowires,” Small, vol. 4, no. 11, pp.
1872–1893, Nov 2008.

[186] A. Colli, S. Pisana, A. Fasoli, J. Robertson, and A. C. Ferrari, “Electronic transport in
ambipolar silicon nanowires,” Physica Status Solidi (B), vol. 244, no. 11, pp. 4161–4164,
2007.

[187] A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, and A. C. Ferrari, “Ion beam
doping of silicon nanowires,” Nano Letters, vol. 8, no. 8, pp. 2188–2193, 2008.

[188] A. Colli, A. Fasoli, S. Pisana, Y. Fu, P. Beecher, W. I. Milne, and A. C. Ferrari, “Nanowire
lithography on silicon,” Nano Letters, vol. 8, no. 5, pp. 1358–1362, 2008.

[189] S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires
as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology, vol. 16,
no. 9, pp. 1482–1485, 2005.



ȏȖȏșȖȜȔȟȎȝȕȦ 169

[190] H. Yoshioka, N. Morioka, J. Suda, and T. Kimoto, “Mobility oscillation by one-
dimensional quantum confinement in Si-nanowire metal-oxide-semiconductor field
effect transistors,” Journal of Applied Physics, vol. 106, no. 3, p. 034312, 2009.

[191] A. A. Talin, F. Léonard, B. S. Swartzentruber, X. Wang, and S. D. Hersee, “Unusually
strong space-charge-limited current in thin wires,” Physical Review Letters, vol. 101, no. 7,
p. 076802, 2008.

[192] W. Chandra, L. K. Ang, and W. S. Koh, “Two-dimensional model of space charge limited
electron injection into a diode with Schottky contact,” Journal of Physics D-Applied Physics,
vol. 42, no. 5, Mar 7 2009.

[193] Y. Gu and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen
adsorption,” Applied Physics Letters, vol. 89, no. 14, p. 143102, 2006.

[194] C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, “Single p-type/intrinsic/n-type
silicon nanowires as nanoscale avalanche photodetectors,” Nano Letters, vol. 6, no. 12,
pp. 2929–2934, 2006.

[195] S. Jin, M. Fischetti, and T. wei Tang, “Theoretical study of carrier transport in silicon
nanowire transistors based on themultisubband Boltzmann transport equation,” Electron
Devices, IEEE Transactions on, vol. 55, no. 11, pp. 2886–2897, Nov. 2008.

[196] H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting
and metallic nanowires,” Phys. Rev. B, vol. 72, no. 11, p. 115308, Sep 2005.

[197] Y. Gu, E.-S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom, and L. J. Lauhon, “Near-field
scanning photocurrent microscopy of a nanowire photodetector,” Applied Physics Letters,
vol. 87, no. 4, p. 043111, 2005.

[198] Y. Ahn, J. Dunning, and J. Park, “Scanning photocurrent imaging and electronic band
studies in silicon nanowire field effect transistors,” Nano Letters, vol. 5, no. 7, pp.
1367–1370, 2005.

[199] C. Rossler, K.-D. Hof, S. Manus, S. Ludwig, J. P. Kotthaus, J. Simon, A. W. Holleitner,
D. Schuh, and W. Wegscheider, “Optically induced transport properties of freely
suspended semiconductor submicron channels,” Applied Physics Letters, vol. 93, no. 7, p.
071107, 2008.

[200] Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium
nanowire field effect transistors,” Applied Physics Letters, vol. 91, no. 16, p. 162102, 2007.

[201] A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors
showing phototransistive gain,” Applied Physics Letters, vol. 93, no. 12, p. 121110, 2008.

[202] A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H.
Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and
single-plasmon sources,” Nat Phys, vol. 5, no. 7, pp. 475–479, Jul. 2009.

[203] Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative
measurement of the electron and hole mobility-lifetime products in semiconductor
nanowires,” Nano Letters, vol. 6, no. 5, pp. 948–952, 2006.



170 ȏȖȏșȖȜȔȟȎȝȕȦ

[204] S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. F. i Morral, and A. W. Holleitner,
“Photocurrent and photoconductance properties of a GaAs nanowire,” Applied Physics
Letters, vol. 95, no. 8, p. 083111, 2009.

[205] I. Wilke, W. Herrmann, and F. K. Kneubühl, “Integrated nanostrip dipole antennas for
coherent 30 THz infrared radiation,” Applied Physics B: Lasers and Optics, vol. 58, no. 2,
pp. 87–95, Feb 1994.

[206] L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,”
Proceedings of the IEEE, vol. 97, no. 7, pp. 1161–1165, July 2009.

[207] E. Anemogiannis and E. N. Glytsis, “Multilayer wave-guides - efficient numerical analysis
of general structures,” Journal of Lightwave Technology, vol. 10, no. 10, pp. 1344 – 1351, Oct
1992.

[208] A. Bakhtazad, H. Abiri, and R. Ghayour, “A general transform for regularizing planar
open waveguide dispersion relation,” Journal of Lightwave Technology, vol. 15, no. 2, pp.
383 – 390, Feb 1997.

[209] M. S. Kwon and S. Y. Shin, “Simple and fast numerical analysis of multilayer waveguide
modes,” Optics Communications, vol. 233, no. 1-3, pp. 119 – 126, Mar 2004.

[210] R. Rodriguez-Berral, F. Mesa, and F. Medina, “Appropriate formulation of the
characteristic equation for open nonreciprocal layered waveguides with different upper
and lower half-spaces,” IEEE Transactions on Microwave Theory and Techniques, vol. 53,
no. 5, pp. 1613 – 1623, May 2005.

[211] R. Rodriguez-Berral, F. Mesa, and F. Medina, “Systematic and efficient root finder for
computing the modal spectrum of planar layered waveguides,” International Journal of
RF and Microwave Computer-Aided Engineering, vol. 14, no. 1, pp. 73 – 83, January 2004.

[212] R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, “Mode determination for planar
waveguide using the four-sheeted dispersion relation,” IEEE Journal of Quantum
Electronics, vol. 28, no. 6, pp. 1520 – 1526, Jun 1992.



This dissertation is typeset using X ELATEX. FF Scala and FF Scala Sans fonts by Martin
Majoor, as well as the Minion Matħ font by Johannes Küster are used for the text and
the math parts respectively.


	Title Page
	Copyright Page
	Signature Page
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Background Information
	Permittivity of Metals
	Microwave Regime
	Infrared Regime
	Ultraviolet Regime

	Surface Impedance of Metals
	Metal - Insulator Waveguides
	Metal - Insulator - Metal Waveguides

	Metal-Insulator-Metal Modes
	Introduction
	Some Definitions
	Spectrum
	Point Spectrum
	Continuous Spectrum
	Residual Spectrum
	Orthogonality relationships

	Mode-Matching
	Birth of the Discretuum
	Are the modes complete?
	Field Stitching

	Discussion
	Conclusion

	Circuit Theory for MIM Waveguides
	Introduction
	Scattering Matrix Description of Junctions
	Cascade Connection of Junctions
	Conditions for Zero Reflection
	Mode Converter Design 

	Circuit Model for the Waveguide Junction
	Exact Model
	Simplified Model
	Interpretation of Circuit Models

	Conclusion

	Fundamentals of Antennas
	Introduction
	Basics of Antenna Theory
	Antennas as Scatterers
	Mie Theory
	Method of Moments
	Finite-Difference Time-Domain
	Green's Function Methods
	Summary

	Sleeve Dipole Design for a Closely Integrated Antenna-Detector System

	Fabrication and Measurement Results
	Introduction
	Changes in the Design at 850 nm
	Clean Room Fabrication
	SOI thinning
	Shaping the Silicon
	Crowning the Silicon with a Golden Antenna

	Opto-Electronic Measurement Setup
	Optics
	Electronics
	Mechanics

	Measurement Results and Discussion
	Transport
	Photoresponse

	Concluding Remarks

	Conclusion
	Overview of Maxwell's Equations for Guided Modes
	Argument Principle Method
	Some Details of the Mode Matching Algorithm
	Fabrication Recipe
	Bibliography

