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We review some of the recent advances in the simulation of plasmonic devices, drawing examples
from our own work in metal-insulator-metal (MIM) plasmonic waveguide components and networks.
We introduce the mode-matching technique for modeling of MIM waveguide devices. We derive
the complete set of orthogonal modes that the MIM waveguide supports and use it to apply the
mode-matching technique to the analysis of plasmonic waveguide networks. We also introduce
several different equivalent models for plasmonic waveguide components, such as the characteristic
impedance model for deep subwavelength MIM waveguides, the scattering matrix description of
MIM waveguide junctions, and equivalent circuit models. The model abstraction provided by these
equivalent models is important for the analysis and synthesis of device functions, as illustrated with
the design of a waveguide mode converter.
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1. INTRODUCTION

Surface plasmons are electromagnetic waves that propa-
gate along the interface of a metal and a dielectric. In
surface plasmons light interacts with the free electrons of

∗Author to whom correspondence should be addressed.

the metal which oscillate collectively in response to the
applied field.1 Recently, nanometer scale metallic devices
have shown the potential to manipulate light at subwave-
length scales using surface plasmons. This could lead to
photonic circuits of nanoscale dimensions. The use of
nano-metallic structures could also bridge the size mis-
match between modern electronic components with critical
dimensions on the order of tens of nanometers and the
micrometer scaled optical devices.2

Plasmonic waveguides have shown the potential to guide
subwavelength optical modes at metal–dielectric inter-
faces. Several different plasmonic waveguiding structures
have been proposed,3–8 such as metallic nanowires4�5 and
metallic nanoparticle arrays.6�7 Most of these structures
support a highly-confined mode only near the surface plas-
mon frequency. In this regime, the optical mode typi-
cally has low group velocity and short propagation length.
It has been shown however that a metal-insulator-metal
(MIM) structure with a dielectric region thickness of
∼100 nm supports a propagating mode with a nanoscale
modal size at a wavelength range extending from DC
to visible.9 Thus, such a waveguide could be potentially
important in providing an interface between conventional
optics and subwavelength electronic and optoelectronic
devices. There have been several theoretical studies of
MIM waveguides in the literature.9–18 Because of the
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predicted attractive properties of MIM waveguides, people
have also started to explore such structures experimentally.
In particular, Dionne et al.19 have recently demonstrated
waveguiding in a quasi-two-dimensional MIM geometry
experimentally, showing clear evidence of a subwavelength
guided mode with substantial propagation distances.

Most of the theoretical studies of nanoscale plasmonic
devices involve the use of general purpose electromag-
netic simulation techniques. These techniques are able
to simulate devices of arbitrary geometry and material
composition. On the other hand, as described in the
next section, these techniques typically require numerical
grids with resolution of tens to thousands of grid points
per wavelength, depending on the application. They are
therefore not suitable for the design and optimization of
multi-component optical circuits. One approach to address
this problem is the development of special-purpose simula-
tion techniques with superior computational efficiency for
a specific class of problems. Previously, for example, in the
modeling of photonic crystal devices, it has been shown
that the use of Wannier functions results in several orders
of magnitude speedup in the optimization of photonic
crystal circuits.20 A second approach is the development
of equivalent models with only a few dynamic variables,
which are nevertheless capable of describing complex opti-
cal processes in photonic devices in detail. For example,
in the modeling of photonic crystal devices, it has been
shown that such models can be derived with the use of
coupled mode theory,21�22 and perturbation theory.22�23

In this context, here, we provide a review of some of
our own recent research activities aiming to advance the
theory and simulation of plasmonic waveguide devices
through the development of efficient special-purpose sim-
ulation techniques and equivalent models. We first give
an overview of the challenges involved in modeling of
plasmonic devices, and we briefly examine two general
purpose simulation techniques which are widely used for
modeling of plasmonic waveguide devices. We then intro-
duce the mode-matching technique for modeling of MIM
waveguide devices. We derive the complete set of orthog-
onal modes that the MIM waveguide supports and use
it to apply the mode-matching technique to the analy-
sis of plasmonic waveguide networks. We show that this
special purpose simulation technique is far more effi-
cient for this class of problems than general purpose elec-
tromagnetic simulation techniques. Finally, we introduce
several different equivalent models for plasmonic waveg-
uide components, such as the characteristic impedance
model for deep subwavelength MIM waveguides, the
scattering matrix description of MIM waveguide junc-
tions, and equivalent circuit models. We show that the
model abstraction provided by these equivalent models is
important for the analysis and synthesis of device func-
tions, and we illustrate this with the design of a mode
converter.

2. CHALLENGES INVOLVED IN MODELING
OF PLASMONIC DEVICES

Surface plasmons can be described by macroscopic
electromagnetic theory, i.e., Maxwell’s equations, if the
electron mean free path in the metal is much shorter than
the plasmon wavelength. This condition is usually fulfilled
at optical frequencies.24 Assuming an exp�i�t� harmonic
time dependence of all field quantities, Maxwell’s curl
equations in the frequency domain take the form

� ×E�r�=−i��0H�r� (1)

� ×H�r�= i�	0	r�r�E�r� (2)

In macroscopic electromagnetic theory, bulk material prop-
erties, such as the relative dielectric constant 	r�r�, are
used to describe objects irrespective of their size. However,
for particles of nanoscale dimensions a more fundamental
description of their optical and electronic properties may
be required.25

Analytical methods, such as Mie theory,26 can only be
applied to planar geometries or to objects with very high
symmetry (spheres, infinite cylinders) and have therefore
limited importance in the analysis of plasmonic devices
and structures. Thus, the analysis of plasmonic devices is
mostly based on numerical simulation techniques.

Numerical modeling of plasmonic devices involves sev-
eral challenges specific to plasmonics which need to be
addressed. The dielectric constant of metals at optical
wavelengths is complex, i.e., 	r��� = 	Re���+ i	Im���
and is a complicated function of frequency.27 Thus, sev-
eral simulation techniques which are limited to lossless,
non-dispersive materials are not applicable to plasmonic
devices. In addition, in time-domain methods the disper-
sion properties of metals have to be approximated by
suitable analytical expressions.28 In most cases the Drude
model is invoked to characterize the frequency dependence
of the metallic dielectric function29

	r�Drude���= 1− �2
p

���+ i��
(3)

where �p, � are frequency-independent parameters. How-
ever, the Drude model approximation is valid over a lim-
ited wavelength range.29 The range of validity of the Drude
model can be extended by adding Lorentzian terms to
Eq. (3) to obtain the Lorentz–Drude model29

	r�LD���= 	r�Drude +
k∑

j=1

fj�
2
j

��2
j −�2�− i��j

(4)

where �j and �j stand for the oscillator resonant
frequencies and bandwidths respectively, and fj are
weighting factors. Physically, the Drude and Lorentzian
terms are related to intraband (free-electron) and interband
(bound-electron) transitions respectively.29 Even though
the Lorentz–Drude model extends the range of validity of
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analytical approximations to metallic dielectric constants,
it is not suitable for description of sharp absorption edges
observed in some metals, unless a very large number of
terms is used.29 In particular, the Lorenz-Drude model
cannot approximate well the onset of interband absorp-
tion in noble metals (Ag, Au, Cu) even if five Lorentzian
terms are used.29 In Figure 1 we compare the Drude and
Lorentz–Drude models with experimental data for silver.
We observe that even a five-term Lorentz–Drude model
with optimal parameters results in a factor of two error
at certain frequencies. An alternative approach is the use
of an analytical expression based on multiple complex-
conjugate pole-residue pairs.30 It has been shown that,
when such an approach is used with time-domain meth-
ods, it can lead to substantial savings in both memory and
computation time.30

In addition, in surface plasmons propagating along
the interface of a metal and a dielectric, the field is
concentrated at the interface, and decays exponentially
away from the interface in both the metal and dielec-
tric regions.1 Thus, for numerical methods based on dis-
cretization of the fields on a numerical grid, a very fine
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Fig. 1. Real and imaginary part of the dielectric constant of silver at
optical frequencies. The solid lines show experimental data.27 The dashed
lines show values calculated using (a) the Drude model, (b) the Lorentz–
Drude model with five Lorentzian terms. The parameters of the models
are obtained through an optimization procedure.29

grid resolution is required at the metal-dielectric inter-
face to adequately resolve the local fields. In addition,
several plasmonic devices are based on components of
subwavelength dimensions.1 In fact, most of the potential
applications of surface plasmons are related to subwave-
length optics. The nanoscale feature sizes of plasmonic
devices pose an extra challenge to numerical simulation
techniques.

We illustrate the challenges involved in modeling plas-
monic devices using a simple example. We consider an
infinite periodic array of silver cylinders illuminated by a
plane wave at normal incidence (inset of Fig. 2(a)). We use
the finite-difference frequency-domain method, described
in more detail below, to calculate the transmission of
the periodic array. This method allows us to directly use
experimental data for the frequency-dependent dielectric
constant of metals, including both the real and imagi-
nary parts, with no further approximation. The fields are
discretized on a uniform two-dimensional grid with grid
size �x = �y = �l. In Figure 2(a) we show the calcu-
lated transmission as a function of frequency. We also
show the transmission of the structure calculated with
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Fig. 2. (a) Calculated transmission spectrum of an infinite array of sil-
ver cylinders (shown in the inset) for normal incidence and TM polar-
ization. Results are shown for a = 100 nm. The dashed line shows the
transmission spectrum calculated using the Drude model with parameters
�p = 1�37×1016 sec−1, � = 7�29×1013 sec−1. (b) Calculated transmission
at 855 THz as a function of the spatial grid size �l.
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the Drude model of Eq. (3). We observe that the use
of the Drude model results in substantial error. In gen-
eral, the Drude model parameters are chosen to minimize
the error in the dielectric function in a given frequency
range.31 However, this approach gives accurate results in
a limited wavelength range, as illustrated in this example.
In general, the complicated dispersion properties of met-
als at optical frequencies pose a challenge in modeling of
plasmonic devices not encountered in modeling of low- or
high-index-contrast dielectric devices.

In Figure 2(b) we show the calculated transmission at
a specific wavelength of �0 = 351 nm as a function of
the spatial grid size �l. We observe that a grid size of
�l � 1 nm is required in this case to yield reasonably accu-
rate results. The required grid size is directly related to
the decay length of the fields at the metal-dielectric inter-
face. In general, modeling of plasmonic devices requires
much finer grid resolution than modeling of low- or high-
index-contrast dielectric devices, due to the high localiza-
tion of the field at metal-dielectric interfaces of plasmonic
devices. The required grid size depends on the shape and
feature size of the modeled plasmonic device, the metallic
material used and the operating frequency.

3. GENERAL PURPOSE SIMULATION
METHODS FOR PLASMONIC
WAVEGUIDE DEVICES

Here we briefly examine two general purpose electromag-
netic simulation techniques which are widely used for mod-
eling of plasmonic waveguide devices, the finite-difference
frequency-domain (FDFD) and the finite-difference time-
domain (FDTD) methods. We also examine how they
address the challenges mentioned above. Other general
purpose simulation techniques for modeling of plasmonic
waveguide devices include the Green dyadic method,4 the
finite-element method,32 and the method of lines.33

3.1. Finite-Difference Frequency-Domain Method

In finite-difference methods, derivatives in differential
equations are approximated by finite differences. To
approximate the derivative df /dx�x0

we consider Taylor
series expansions of f �x� about the point x0 at the points
x0 +�x and x0 −�x and obtain28

df

dx

∣∣∣∣
x0

= f �x0 +�x�− f �x0 −�x�

2�x
+O���x�2� (5)

Equation (5) shows that a central-difference approximation
of the first derivative is second-order accurate, meaning
that the remainder term in Eq. (5) approaches zero as the
square of �x.

In finite-difference methods a continuous problem is
approximated by a discrete one. Field quantities are
defined on a discrete grid of nodes. The rectangular grid

with node coordinates rijk = �xi� yj � zk� is the simplest and
most commonly-used. A field quantity at nodal location
rijk is denoted for convenience as fijk = f �rijk�. Based on
Eq. (5), the first derivative can be approximated by the
following central-difference formula

df

dx

∣∣∣∣
i

� fi+1 − fi−1

2�x
(6)

which is second-order accurate, based on the discussion
above, if the rectangular grid is uniform, i.e., xi = i�x.
Similarly, the second derivative can be approximated by
the formula

d2f

dx2

∣∣∣∣
i

� fi+1 −2fi + fi−1

��x�2
(7)

which is also second-order accurate on a uniform grid.28

By replacing derivatives in differential equations with
their finite-difference approximations, we obtain algebraic
equations which relate the value of the field at a spe-
cific node to the values at neighboring nodes. To solve
Maxwell’s equations with the FDFD method, we discretize
the system of the three coupled scalar partial differential
equations obtained from the wave equation for the electric
field

� ×� ×E�r�− 	r�r�
�2

c2
E�r�=−i��0J�r� (8)

For simplicity we consider here two-dimensional problems
with TE polarization. For TE polarization we have E=Ezẑ
and the wave equation for the electric field becomes32�34[

�2

�x2
+ �2

�y2
+k2

0	r�x� y�

]
Ez�x� y�=−i��0Jz�x� y� (9)

For simplicity we consider a uniform rectangular grid with
xi = i�x, yj = j�y, and replace the derivatives in Eq. (9)
with their finite-difference approximations of Eq. (7) to
obtain

fi+1�j−2fi�j+fi−1�j

��x�2
+ fi�j+1−2fi�j+fi�j−1

��y�2
+k2

0	ri�jfi�j =Ai�j

(10)

where f = Ez and A = −i��0Jz. Thus, application of
finite-difference approximations at the node location rij =
�xi� yj� results in a linear algebraic equation which relates
the field fi� j to the fields at the four adjacent nodes
fi+1� j , fi−1� j , fi� j+1, fi� j−1. By applying the finite-difference
approximation to all nodes of the grid we obtain a sys-
tem of linear equations of the form Ax = b, where b is
determined by the source current J. Since the equation for
the field at each point involves only the fields at the four
(six in three dimensions, two in one dimension) adjacent
points, the resulting system matrix is extremely sparse.34

FDFD can be used to model plasmonic devices with
arbitrary geometries. In addition, FDFD is a frequency-
domain technique and can thus treat arbitrary material
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dispersion. Nonuniform and/or nonorthogonal grids are
required in FDFD for efficient treatment of curved sur-
faces and rapid field decays at metal-dielectric interfaces.
In FDFD, as in all other methods which are based on dis-
cretization of the differential form of Maxwell’s equations
in a finite volume, absorbing boundary conditions (ABCs)
are required so that waves are not artificially reflected at
the boundaries of the computational domain.28�32 Very effi-
cient and accurate ABCs such as the perfectly matched
layer (PML) have been demonstrated.35 As mentioned
above, FDFD results in extremely sparse systems of lin-
ear equations. Such problems can be solved efficiently if
direct or iterative sparse matrix techniques are used.32�34

3.2. Finite-Difference Time-Domain Method

The FDTD method28 solves directly Maxwell’s time-
dependent curl equations

� ×E=−�0

�H
�t

(11)

� ×H= 	0	r
�E
�t

(12)

so that both space and time have to be discretized.
The standard FDTD is based on the Yee algorithm.28

As mentioned in the previous section, central-difference
approximations are second-order accurate. To achieve
second-order accuracy in time, the Yee algorithm uses a
leapfrog arrangement.28 E fields are calculated at t = n�t
using previously calculated and stored H fields. Then H
fields are calculated at t = �n+ 1/2��t using the pre-
viously calculated and stored E fields, and the process
continues until time-stepping is concluded. Applying this
scheme to Eq. (11) we obtain

H�n+1/2 =H�n−1/2 − �t

�0

� ×E�n (13)

We observe that the leapfrog scheme yields central-
difference in time and therefore second-order accurate
approximations. In addition, since E(H) fields are obtained
from previously calculated and stored H(E) fields, the
time-stepping is fully explicit, meaning that we do not
have to solve a system of simultaneous equations.28

To achieve second-order accuracy in space, FDTD
uses a special grid, known as the Yee lattice, where
every E component is surrounded by four H compo-
nents and every H component is surrounded by four E
components.28 Based on this arrangement, discretization of
the x-component of Eq. (11) gives

Hx�n+1/2
i� j� k

=Hx�n−1/2
i� j� k + �t

�0

[
Ey�ni� j� k+1/2 −Ey�ni� j� k−1/2

�z

− Ez�ni� j+1/2� k −Ez�ni� j−1/2� k

�y

]
(14)

We observe that, using the Yee lattice, all spatial finite-
difference expressions are central and therefore second-
order accurate. Similar finite-difference equations are
obtained by discretizing the other components of Eqs. (11)
and (12). In summary, FDTD is an explicit numerical
scheme which is second-order accurate both in time and
in space (in uniform media).

3.2.1. Treatment of Dispersive Media in FDTD

One of the major challenges in FDTD modeling of metals
at optical frequencies is the treatment of the metallic dis-
persion properties. As mentioned above, in time-domain
methods the dielectric constants of dispersive media have
to be approximated by suitable analytical expressions. The
most common algorithm for modeling dispersive materials
with FDTD is the auxiliary differential equation (ADE)
method.28�36 In dispersive materials 	��� relates E and D

D= 	���E (15)

ADE is based on integrating an ordinary differential equa-
tion in time that relates D�t� to E�t�, concurrently with
Maxwell’s equations. This equation is derived by taking
the inverse Fourier transform of Eq. (15).

We consider here a simple example where the dielectric
constant 	r��� consists of a single Lorentzian term, i.e.,

	r���= �2
0

��2
0 −�2�− i��0

(16)

If we substitute Eq. (16) into Eq. (15) and take the inverse
Fourier transform, we obtain a second-order differential
equation relating D and E

�2
0D+�0

�D
�t

+ �2D
�t2

= �2
0	0E (17)

Equation (17) is discretized using a second-order accurate
central-difference scheme similar to those described above.
We note that, if the ADE method is used, E is obtained
from H in two steps. First, D is obtained from H by solv-
ing the finite-difference approximation of

� ×H= �D
�t

(18)

Second, E is obtained from D by solving the finite-
difference approximation of Eq. (17). Calculation of the
finite-difference expressions of the first and second time
derivatives of D in Eq. (17) requires the storage of 2 pre-
vious values of D. In other words not only D�n+1 but also
D�n and D�n−1 are required to obtain E from D.

Another approach to model dispersive materials with
FDTD is the recursive convolution (RC) method.28�36

FDTD is a finite-difference method, so its performance
in modeling plasmonic devices is similar to the perfor-
mance of FDFD. However, there are some major differ-
ences. First, as already mentioned above, in time-domain
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methods the dispersion properties of metals have to be
approximated by suitable analytical expressions which
introduce substantial error in broadband calculations. In
addition, the implementation of the ADE or RC methods
requires additional computational cost and extra memory
storage.28�36 On the other hand, in FDTD it is possible to
obtain the entire frequency response with a single simu-
lation by exciting a broadband pulse and calculating the
Fourier transform of both the excitation and the response.28

4. MODE-MATCHING METHOD

In this section, we introduce the mode-matching tech-
nique for MIM waveguide devices. The mode-matching
technique37 is commonly used in the microwave and opti-
cal domains.38–41 We derive the complete set of orthogonal
modes that the MIM waveguide supports and use it to
apply the mode-matching technique to the calculation of
scattering at the junction between two guides with differ-
ent cross sections.

4.1. Spectrum of MIM Waveguides

The mode-matching method is based on expanding the
fields in terms of the modes of the waveguides. In this
context here we derive the modal structure (spectrum) of
the MIM waveguide.42 We will specifically focus on the
even modes of the waveguide, for which the transverse
magnetic (TM) field component is an even function of the
transverse coordinate, x. The reason why we focus on even
modes is that we will be analyzing the scattering of the
fundamental, even mode of the MIM waveguide—which
is also a TM mode10�11�15—off of a symmetric junction
with a different sized MIM waveguide. Due to the symme-
try of the problem at hand, even modes will be sufficient.
Evenness of the function is achieved by putting a fictitious
perfect electric conductor (PEC) at the x = 0 plane of the
waveguide, which forces the tangential electric field Ez to
be an odd function, and the magnetic field Hy to be an
even function of x. In other words, the modes of this ficti-
tious waveguide with the PEC at x= 0 are mathematically
the same as the even modes of the actual waveguide of
interest, and so we will work with this hypothetical waveg-
uide. The geometry is as shown in Figure 3(a). 	m refers to
the permittivity of the metal region and 	i of the insulator
region. At infrared frequencies, 	m (Fig. 1) is a complex
number with a large, negative real part and a relatively
small imaginary part (the sign of which is determined by
the time convention used, being negative for an exp�i�t�
time dependence).

We begin with Maxwell’s equations (Eqs. (1), (2)). The
MIM waveguide is a two dimensional structure which does
not have any variation in the y direction. Therefore, we can
eliminate all the derivatives with respect to y in Maxwell’s
equations. Furthermore, our study will be based on the TM

x = 0

x

z

εm

εi
a

a′

(a)

x = 0

x

z
εm

εi

x = a + h

a′

h′

a

h

(b)

= a′ + h′

Fig. 3. (a) Geometry for the even modes of the MIM waveguide. The
x = 0 plane contains a fictitious perfect electric conductor (PEC) to sim-
plify the problem when dealing only with even TM modes of the guide.
This fictitious MIM waveguide is equivalent to an actual guide with an
insulator thickness of 2a. The inset shows the equivalent symmetric junc-
tion of two MIM waveguides. Dashed line in the inset is the plane of sym-
metry, which is where the fictitious PEC layer is introduced. (b) Geometry
for mode matching. x= a+h plane of Figure 3(a) is terminated by a PEC
which leads to a discretization of the continuous spectrum.

modes which only have the Hy , Ex and Ez field compo-
nents. Also, the uniformity of the waveguide in the z direc-
tion leads to exp�−ikzz� as the space dependence in z by
using the separation of variables technique for differen-
tial equations (kz may, however, be a complex number).
After simplifying the curl equations in (1), (2), we have the
following relationships between the different field
components

i���x�Hy�x�= ikzEx�x�+
d

dx
Ez�x�

ikzHy�x�= i�	�x�Ex�x�

d

dx
Hy�x�= i�	�x�Ez�x�

(19)

Using these equations we get the following differential
equation for Hy(

	�x�
d

dx

1
	�x�

d

dx
+�2��x�	�x�

)
Hy = k2

zHy (20)

and since Ez�0�= 0 by the PEC wall at x= 0, the boundary
condition for Hy under (19) becomes dHy�x�/dx�x=0 = 0.

4.1.1. Point Spectrum

The dispersion equation that should be solved in order to
find the kz values for the modes of the MIM waveguide is
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derived by satisfying the continuity of tangential electric
and magnetic fields at material boundaries and applying
the boundary conditions. We refer the reader to Refs. [43
and 9, 11, 44–46] for the details. The eigenvectors �&n�
and the dispersion equation for the corresponding eigen-
values �k2

z�n� of (20) for the even TM modes of the MIM
waveguide are

&n�x� = H0




cosh�'i�nx�

cosh�'i�na�
0 < x < a

e−'m�n�x−a� a < x <

(21)

tanh�'i�na�=−'m�n/	m
'i�n/	i

(22)

k2
z�n = '2

m�n+�2�	m = '2
i� n+�2�	i (23)

where Re�'m�n� > 0 so that &n�x� does not diverge and is
integrable. Here n is a discrete index for the eigenvalues
and the eigenfunctions.

4.1.2. Continuous Spectrum

In this section, we show that a continuous spectrum exists
in the MIM waveguide. The utility of the continuous spec-
trum will be evident in the mode matching analysis.

The condition of square integrability of the modes can
be replaced by the weaker condition of finiteness of the
modes in their domain of definition.47 For the MIM waveg-
uide, this would imply a non-zero, yet finite electromag-
netic field at infinity. These infinite-extent and, therefore,
infinite energy, continuum modes (which can be normal-
ized through the use of the Dirac delta distributions48�49) are
integrated to realize any physically possible finite energy
field configuration. In this respect, such an approach is sim-
ilar to the well-known Fourier transform methods, where
finite energy functions are expanded in terms of the infinite
energy exponentials.

Constraining fields to be finite, instead of zero, at infin-
ity leads to the following field profile

+,�x� = H0




cosh�'i�,x�

cosh�'i�,a�
0 < x < a

cosh�'m�,�x−a��

+ - sinh�'m�,�x−a�� a < x <


(24)

- = 'i�,/	i
'm�,/	m

tanh�'i�,a� (25)

k2
z�, = '2

m�, +�2�	m = '2
i�, +�2�	i (26)

which is calculated very similarly to the case of a dielec-
tric slab.43 Here , is a continuous index for different
functions in the continuous spectrum. For finite +, , the
arguments inside the hyperbolic functions for x > a in
(24), 'm�, , should be purely imaginary which implies that

Re�'2
m�,� < 0 and Im�'2

m�,� = 0. These conditions can be
written in terms of kz�, by using (26) as

Re�k2
z� , −�2�	m� < 0 and Im�k2

z� , −�2�	m�= 0

Note that when (22) holds true, we have - = −1 in (25)
which makes (24) and (21) equivalent.

4.2. Mode Orthogonality

Orthogonality and completeness are two very valuable
properties of modes, which make the mode matching tech-
nique possible. Here we use the pseudo-inner product,
�·�·�, defined as50

�f �g�=
∫ 


0
f �x�g�x�dx

It can be shown that two different eigenfunctions, &1�x�
and &2�x�, corresponding to two different eigenvalues k2

z�1

and k2
z�2 are pseudo-orthogonal with 	−1�x� weight50�51

�	−1&1 � &2�= 0 (27)

From (19) it can be seen that 	−1&1 is proportional to
the transverse electric field component Ex of the mode.
Therefore, the orthogonality condition can also be written
as ∫ 


0
Ex1�x�Hy2�x�dx =

∫
A
E1�r�×H2�r� ·dA= 0

which is the well known modal orthogonality condition
proved by the Lorentz reciprocity theorem,52 where A
denotes the cross section of the waveguide.

One can directly verify (27) by integration and using
'2
m�1 − '2

m�2 = '2
i�1 − '2

i�2 which is a result of (23). The
following orthogonality conditions between the elements
of the point (&n) and the continuous (+,) spectrum can
similarly be proved

�	−1&n�+,� = 0 for all n and ,

�	−1+��+,� = 0 for , �= �

In the following sections, we will be working with fields
at the junction of two different waveguides. For notational
abbreviation we will use the following convention

e
�i�

/L�R2 = E
/L�R2
x� i

h
�i�

/L�R2 =H
/L�R2
y� i

where /L�R2 is used to denote the modes of the left and
right side of the junction, which leads to the following
orthogonality condition

�e
�i�

/L�R2 � h�j�

/L�R2�= 3ij4/L�R2 (28)

where 3ij is the Kronecker delta function and 4 is the
overlap integral of the electric and magnetic transverse
fields.
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Table I. Adjectives.

Signifier Signified

Leaky Re�'m� < 0
Proper Re�'m� > 0
Improper Re�'m�= 0
Forward Re�kz� > 0
Backward Re�kz� < 0

After the classification and analysis of the MIM waveg-
uide modes, we will now visualize different parts of its
spectrum by finding the zeros of the respective disper-
sion equations through the use of the argument principle
method.53–58 We will use the adjectives in Table I to further
differentiate between the modes.
Leaky modes are not normalizable and are not part of the

spectrum. Proper modes can be normalized by the usual
integration and they form the point spectrum. Improper
modes can be normalized by using the Dirac delta func-
tions, 3�x�. They form the continuous spectrum. Forward
modes have a positive phase velocity, whereas the back-
ward modes have a negative phase velocity. We decide
on the sign of Re�kz� based on Im�kz�: By definition, all
modes are propagating in the +z direction. Therefore, in
the limit z → 
, the fields should go to zero. Such a
behavior is possible only if Im�kz� is negative, since the
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Fig. 4. Spectrum of the MIM waveguide for 	m = −143�497 and 2a = �/4 where � = 1550 nm is the wavelength of operation. There are four real
modes and an infinite number of complex modes, all denoted with the • symbol. The thick line denotes the continuous spectrum. Due to the fact
that 	m is real, complex modes come in complex conjugate pairs. Insets show the Hy mode shapes in the x direction for the discrete spectrum (TM0

through TM8) and the continuous spectrum (TMC1 and TMC2)—solid lines in the insets are the real part of the mode, dashed lines are the imaginary
part. The locations of the drawn continuous modes are shown by the • symbol. Modes in the continuous spectrum are purely oscillatory in the x

direction. Complex modes have a small decay, which is not visually apparent in the inset for TM8.

fields have an exp�−ikzz� dependence. The argument prin-
ciple method gives us the 'm value for the modes. By
using (23) we get the k2

z value. We then calculate �k2
z �

1/2

and choose the root which satisfies Im�kz� < 0.
In Figure 4 the spectrum of an idealized lossless silver-

like MIM waveguide is shown on the plane of '2
m for

	m = −143�497 which is the real part of the permittivity
of silver at a wavelength � of 1550 nm.27�59 There are
four real modes for 2a = �/4—TM0, TM2, TM4, TM6—
indexed according to the number of zero crossings in Hy .
There is also an infinite number of complex modes, which
are those with eight and more zero crossings in the insu-
lator region. These modes have a 'm with a positive real
part that is rather small compared to the imaginary part—
this can also be deduced from the scale of the imaginary
axis of Figure 4. The continuous spectrum is illustrated
by the thick line which corresponds to Re�'2

m� < 0 and
Im�'2

m�= 0. This line is also the branch cut of the square
root function that is used to get 'm from '2

m. The field pro-
files of the modes in the insulator region, as shown in the
insets of Figure 4, look quite similar to the field profile of
the even modes of a parallel plate waveguide with a plate
separation of 2a.

'2
m = 0 is the bifurcation point for the point spec-

trum when 	m is purely real. For positive '2
m, the point

spectrum has real modes, whereas for negative '2
m, the
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point spectrum splits into two branches that are com-
plex conjugates of one another. '2

m = 0 corresponds to
k2
z = 	mk

2
0 which then implies kz = −i

√�	m�k0—bounded
modes should have Im�kz� < 0.

When loss is introduced to the metal, the spectrum
moves on the complex plane.42 The forward, proper, com-
plex modes of the lossless case turn into leaky modes by
migrating into the third quadrant of the complex 'm plane.

4.3. Discretization of the Continuous Spectrum

The presence of a continuous spectrum leads to the forma-
tion of integral equations when the mode-matching method
is applied.48 The integral equation is then expanded
using an orthogonal basis set—not necessarily that of the
modes—to solve the scattering problem.

Another way to approach the scattering problem is
to limit the transverse coordinates by a PEC wall. This
approach has the effect of discretizing the continuum part
of the spectrum47�60—turning it into a discrete spectrum.
To limit parasitic reflections from the PEC walls, absorb-
ing layers can be positioned before the PEC termination.38

In Ref. �61� detailed analysis of how the continuous spec-
trum appears from a discrete collection can be found. We
will use a PEC wall to discretize the continuous spectrum.
Also, we will not use any perfectly matched layers to limit
parasitic reflections since the metallic sections with per-
mittivity 	m effectively absorb the fields away from the
junction.

The geometry is as shown in Figure 3(b). For the left
waveguide the dispersion equation for modes becomes

tanh�'i�na�=−'m�n/	m
'i�n/	i

tanh�'m�nh� (29)

which asymptotes to (22) as h→
. The transverse mag-
netic field shape is

&n�x�=H0




cosh�'i�nx�

cosh�'i�na�
0 < x < a

cosh�'m�n�x−a−h��

cosh�'m�nh�
a < x < a+h

(30)

4.4. Mode Completeness

We tested the completeness of the modes by expanding the
fundamental mode of an MIM waveguide of a given thick-
ness in terms of the modes of the MIM waveguide with a
different thickness. Without the continuous spectrum, the
field expansion converges, but to a field profile which is
not the same as the desired profile of the right junction.42

On the other hand, inclusion of the continuous spectrum
through the discretization of the continuum by a PEC wall
leads to the correct field profile. Similarly, we found that
for the magnetic field profile at the junction of two MIM

waveguides convergence of the fields on both sides of the
junction is obtained only when the continuous spectrum
is also taken into consideration. Thus, it is clear that the
point spectrum on its own is not sufficient to describe the
behavior of the waveguide junctions. Inclusion of the con-
tinuous spectrum is essential. This is further illustrated in
the next section.

4.5. Convergence of the Mode-Matching Method

Now that we know how to treat the continuous spectrum
and are confident that the collection of the point and the
continuous spectrum results in a complete basis set, we
can proceed with the mode-matching formalism. We will
begin by assuming that the pth mode of the left waveg-
uide propagates toward the right, scatters and creates the
following set of fields at the right and left sides of the
junction, which by the continuity of the tangential mag-
netic and electric fields, are set equal


∑
m=1

�3mp +Rmp�h
�m�
L �x�=


∑
k=1

Tkph
�k�
R �x� (31)


∑
m=1

�3mp −Rmp�e
�m�
L �x�=


∑
k=1

Tkpe
�k�
R �x� (32)

Here Rmp is the reflection coefficient of the mth mode of
the left waveguide in response to an incoming field in the
pth mode. Similarly, Tkp is the transmission coefficient of
the kth mode of the right waveguide. Note that we chose
Rmp to denote the reflection coefficient for the transverse
magnetic fields, which automatically results in −Rmp as
the reflection coefficient for the transverse electric fields.

In Ref. [62], it is shown that the testing of the above
equations (i.e., the discretization of the equation using inte-
gration of both sides by a given function) should be done
by the magnetic field of the larger waveguide for enforcing
electric field continuity (32) and by the electric field of the
smaller waveguide to enforce the magnetic field continu-
ity (31). Although that analysis was specifically done for
waveguides with perfect metals ��	m� → 
�, we still use
that strategy so that the formulation limits to the correct
one should metals be made perfect.

For those cases where a < a′, we will take the pseudo-
inner product of (31) with e

�n�
L and of (32) with h

�n�
R . Fur-

thermore, assuming there are L modes on the left and R
modes on the right, we get

L∑
m=1

�3mp +Rmp�4
�m�
L 3mn =

R∑
k=1

Tkp�e
�n�
L � h�k�

R �

L∑
m=1

�3mp −Rmp��e
�m�
L � h�n�

R �=
R∑

k=1

Tkp4
�k�
R 3kn

with the help of (28). These are linear matrix equations
with Rmp and Tkp as the unknowns. After calculating the
inner products, the set of equations can be inverted to

J. Comput. Theor. Nanosci. 6, 1808–1826, 2009 1817



R
E
V
IE
W

Modeling of Plasmonic Waveguide Components and Networks Veronis et al.

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

Number of modes

E
rr

or

2a 2a′

2a = 0.9λ

2a = 0.5λ

2a = 0.1λ

0º

30º

60º

90º

120º

150º

180º

210º

240º

270º

300º

330º

0.2

0.4

0.6

0.8

1.0

S11

1

S22

1

(a)

(b)

Fig. 5. (a) Convergence study of the reflection coefficient, S11, of the
main mode of the left waveguide traveling toward the right waveguide for
2a= 0�9�, 2a= 0�5� and 2a= 0�1�. a′/a = 0�4 and 	m = −143�497−
i9�517 for all cases. Dashed lines are for calculations including the point
spectrum only. Solid lines are those with both the point and the con-
tinuous spectrum. Empty circles denote the calculations done with the
forward point spectrum and the continuous spectrum for the 2a= 0�1�
case only. Error is defined as ��SMM

11 −SFDFD
11 �/SFDFD

11 � where MM stands for
mode-matching and FDFD for finite-difference frequency-domain calcu-
lations. The inset shows the junction geometry. (b) Reflection coefficient
of the main mode at the junction between two MIM waveguides of dif-
ferent insulator thicknesses, plotted on the complex plane within the unit
circle. Both waveguides have 	m =−143�497− i9�517 and 	i = 1�0. Filled
circles, •, are FDFD results, empty circles, �, are mode-matching results.
The left waveguide thickness is fixed at 2a= 0�9�. The right waveguide
thickness varies from 2a′ = /0�02��0�04�� � � � �0�9�2. The origin is the
zero reflection point that corresponds to a= a′. As a′ decreases progres-
sively toward zero, we move progressively along the curves away from
the origin. The first set of curves, S11, are for the case when the mode of
the left waveguide, traveling from left to right, is scattered by the junc-
tion. The second set of curves, S22, are for the case when the main mode
of the right waveguide, traveling from right to left, is scattered by the
junction. Insets illustrate the respective cases.

give the reflection and transmission coefficients for the
modes.

In Figure 5(a), we compare the mode-matching method
with the FDFD technique. It takes relatively few modes for

the mode-matching calculations to converge. Without the
continuous spectrum, the mode matching results converge
to the wrong result. Inclusion of the continuous spectrum
decreases the error to around 2%, which is probably due
to the space discretization of FDFD simulations as well
as the method used in the de-embedding of the scattering
coefficients from fields. As is also evident from Figure 5(a)
the utility of the single mode �L= R= 1� mode-matching
calculations increases as the dimensions of the waveg-
uides decreases. The single mode approximation is closely
related to the characteristic impedance model described in
Section 5.1 which is a good approximation for deep sub-
wavelength structures. In Figure 5(a) we also show the
effect of neglecting the backward modes in the mode-
matching calculations for the 2a = 0�1� case. Backward
modes are important in this subwavelength geometry; how-
ever, for the wider geometries of the 2a = 0�5� and
2a = 0�9� cases we did not observe any increase in the
error when backward modes were neglected in the mode-
matching calculations.

In Figure 5(b) we visualize the scattering coefficient
of the main mode of the MIM waveguide. (The extrac-
tion of the scattering parameters from full field simula-
tions is described in detail in the section below.) We do
the calculations in two different ways, one using FDFD,
and the other using the mode-matching technique with
the point and the continuous spectrum. When applying
mode-matching, we use the a > a′ formulation for S11

calculations and the a < a′ one for S22. There is a very
good match between the results of the two techniques,
verifying the applicability of the mode-matching method.
In addition, since the convergence of the mode-matching
method requires relatively few modes, the use of the mode-
matching technique results in orders of magnitude speedup
in the calculation of the properties of the junction.

5. EQUIVALENT MODELS FOR PLASMONIC
WAVEGUIDE COMPONENTS

Modeling electromagnetic wave propagation using trans-
mission lines has been one of the most important achieve-
ments of microwave network theory.63 The concept of
impedance64 and understanding the effects of waveguide
discontinuities in terms of lumped circuit elements were
crucial in this respect. Even though the properties of met-
als are quite different at optical wavelengths compared
to the microwave, designs that are qualitatively similar to
their low frequency counterparts have been demonstrated
at optical frequencies.65 It has also been shown that the
fundamental TM mode of an MIM waveguide continu-
ously changes to the TEM mode of a parallel-plate waveg-
uide with PEC boundaries as the frequency of operation
is decreased.66 It is intriguing to ask whether methods of
microwave can be applied to this new generation of nano-
metallic structures to come up with concise descriptions of
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components that can lead to a simplified approach to the
design of functional systems composed of many interact-
ing parts.

Here we first introduce the concept of the character-
istic impedance for MIM plasmonic waveguides and we
show its validity and usefulness for subwavelength guides.
We then characterize the modal reflection and transmission
from MIM junctions using the scattering matrix approach,
a commonly used method in microwave network theory.
We also represent the scattering matrix of MIM junctions
in terms of an equivalent lumped circuit model. Finally, to
test our characterization, we design a cascade connection
of MIM junctions to couple the mode of a wavelength-
sized MIM waveguide to that of a subwavelength one with
zero reflection. Throughout our analysis, we will compare
MIM waveguides to PEC parallel plate waveguides and
comment on the similarities and the differences between
the two.

5.1. Characteristic Impedance Model

The characteristic impedance of the fundamental TEM
mode in a PEC parallel-plate waveguide is uniquely
defined as the ratio of voltage V to surface current density
I and is equal to67

ZTEM ≡ V

I
= Exd

Hy

= :TEM

�	0

d =
√

�0

	0

d (33)

where Ex, Hy are the transverse components of the electric
and magnetic field respectively, and we assumed a unit-
length waveguide in the y direction. For non-TEM modes,
such as the fundamental MIM mode, voltage and current
are not uniquely defined. However, metals like silver sat-
isfy the condition �	metal� � 	diel at the optical communi-
cation wavelength of 1.55 �m.27 Thus, �Exmetal� � �Ex diel�
so that the integral of the electric field in the transverse
direction can be approximated by Ex diel d and we may
therefore define the characteristic impedance of the funda-
mental MIM mode as15

ZMIM�d�≡ Ex diel d

Hy diel

= :MIM�d�

�	0

d (34)

where :MIM�d� = 2;/�g�d�, and �g is the guide wave-
length. In Figure 6 we show the reflection coefficient of
an MIM T-shaped splitter calculated based on ZMIM as

R̄=
∣∣∣∣ZL −Z0

ZL +Z0

∣∣∣∣
2

=
∣∣∣∣2ZMIM�dout�−ZMIM�din�

2ZMIM�dout�+ZMIM�din�

∣∣∣∣
2

(35)

We observe that there is very good agreement between
R̄ and the exact reflection coefficient R calculated using
FDFD. This agreement suggests that the concept of char-
acteristic impedance for MIM waveguides is indeed valid
and useful. The deviation between R̄ and R at large val-
ues of din/dout is due to the fact that din is not very small
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Fig. 6. Reflection coefficient R of a MIM T-shaped splitter (shown in
the inset) as a function of din/dout at �0 = 1�55 �m calculated using
FDFD. We also show with dashed line the reflection coefficient R̄ calcu-
lated based on the characteristic impedance ZMIM and transmission-line
theory. Results are shown for dout = 50 nm.

compared to the wavelength and the quasistatic approx-
imation therefore breaks down. We found that similar
deviations are observed for PEC parallel-plate waveguides.
Such deviations decrease at longer wavelengths in both the
PEC and MIM waveguide cases.

5.2. Scattering Matrix Description of Junctions

In this section, we characterize the modal reflection and
transmission from MIM junctions using the scattering
matrix approach, a commonly used method in microwave
network theory.68 We consider the geometry shown in
Figure 7(a). The insulating region is free space with a per-
mittivity 	i = 1, and the metal is silver with a permittivity
of 	m = −143�497− i9�517.27�59 The wavelength of oper-
ation is fixed at � = 1550 nm, in the L band of optical
telecommunications.

Using the dispersion equation for even modes of the
MIM waveguide it can be shown that only a single even
propagating mode can exist for 2a < 0�97� for our choice
of 	m, 	i and �. The condition for the PEC parallel plate
waveguide is similar, where only a single even propaga-
tion mode exists for 2a < 1�0�. When there is only one
propagating mode, far away from the waveguide junction
the fields can be written in terms of that main mode of the
system since all higher order modes will have an exponen-
tial decay much faster compared to the main propagating
mode. Under such circumstances, the effects of the waveg-
uide junction on the propagating modes can be described
using the single mode scattering matrix (S) formalism.69

In the terminology of the scattering matrix, the forward
and backward mode amplitudes are considered to scatter
from one “port" to another. Here we can think of the ports
as being the left and right port planes shown in Figure 7(a).
These ports are sufficiently far to the left and right of the
junction that the fields have settled down again to being
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Fig. 7. (a) Description of the modeling geometry. Dashed lines represent the location of the left and right ports of the overall scattering matrix S that
describes this junction (schematically shown in the bottom part of the figure). (b) Description of the steps taken in extracting S from fields. Calibration
simulations with uniform insulator widths of 2a and 2a′, which give the wave vector k and the values of the incoming fields at the left, H+

L &L�x�,
and right ports, H+

R &R�x�. (c) Field impinging from the left side, which leads to S11. (d) Field impinging from the right side, which leads to S22.
(e) Simulation domain is terminated by a perfect electric conductor at the right input port plane. S12 is extracted from the reflection coefficient R using
the previously calculated S11 and S22.

the propagating modes of the guides (nearer to the inter-
face, there will in general be other field behavior, includ-
ing various near-field components that decay rapidly with
distance).

If we can deduce the scattering matrix for such a junc-
tion, then we can have a very simple way of modeling
the behavior of structures containing such junctions, as is
already well known in the modeling of microwave guides.
The elements of the scattering matrix, S11, S12, S21, S22,
are complex numbers which describe the phase and magni-
tude of the reflection and transmission of the main modes.
Thus, in general there are 8 independent real numbers
in S. However, under certain conditions the number of
independent parameters can be reduced. First of all, if the
system is composed of reciprocal media (i.e., symmet-
ric permittivity and permeability tensors) then using the
Lorentz reciprocity theorem it can be shown that S12 = S21.
Note that this equality implies a certain normalization of
the modes,69 specifically∫

A
EL×HL ·dA=

∫
A
ER×HR ·dA= 1 (36)

where E/L�R2 and H/L�R2 denote the electric and magnetic
components of the main propagating modes on the left
(L) and the right (R) of the waveguide junction. Also note
that for lossless systems S is a unitary matrix69 (though
in general here we will be considering systems with loss).
As a result, using reciprocity it is possible to describe a
lossy junction using six real numbers, two for each of S11,
S12, and S22. When there is no loss we only need three real
numbers due to the unitarity of S.

We now describe the method we used to extract the ele-
ments of S from the electromagnetic fields in such waveg-
uide junctions. We solved Maxwell’s equations using the

FDFD method. In the vicinity of the waveguide junction,
higher order modes will be excited. We chose the left and
right ports of our junction sufficiently (5�) away from the
physical junction where the amplitudes of the higher order
modes are negligible. In the following we will formulate
S in terms of the transverse magnetic field component Hy .
We will use &L�x� to denote the main mode of the left
waveguide and &R�x� for the right waveguide.

The scattering matrix relates the amplitudes and phases
of the modes that arrive at the left and right ports, H+

L , H+
R

to the amplitudes and phases of the modes that propagate
away from the ports, H−

L and H−
R . Formally we can write

(
H−

L

H−
R

)
=
(
S11 S12

S21 S22

)(
H+

L

H+
R

)
(37)

In order to extract S we need to know the fields that
arrive at the left and right ports from our numerical sources
in the simulation domain. To do that we do two cali-
bration simulations (one for the left waveguide, another
for the right waveguide) without any discontinuities, as
shown in Figure 7(b), and record the fields. This gives us
the required H+

/L�R2&/L�R2�x� in addition to the propaga-
tion vectors, k/L�R2, of the two main modes for guides of
insulator thicknesses 2a and 2a′ respectively. Then we do
two more simulations where we send the mode from the
left and from the right waveguide to the discontinuity as
schematically shown in Figures 7(c–e). From the results
of the simulation in Figure 7(c), for the fields to the left
of the left port, HL�x� z�, we get

HL�x� z� = �H+
L e−ikLz+H−

L e+ikLz�&L�x�

= �H+
L �e−ikLz+S11e

+ikLz��&L�x�
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where the location of the left port determines the origin
for z and in (37) we used the fact that H+

R = 0 for the
simulation depicted in Figure 7(c). Simple algebra gives

S11 =
HL�x� z�

H+
L &L�x�

e−ikLz− e−2ikLz (38)

Very similarly, we also extract S22 from the results of the
simulation of Figure 7(d).

In order to extract S12, we terminate our simulation
domain at the plane of the right port with a perfect electric
conductor. Such a termination results in zero tangential
electric fields and therefore gives −1 for the reflection
coefficient of the transverse electric field, Ex, and +1 for
the magnetic field, Hy . Thus, at the right port we get H−

R =
H+

R . Using this equality in (37), we get the reflection coef-
ficient, R=H−

L /H+
L , in Figure 7(e)

R= S11 +
S12S21

1−S22

= S11 +
S2

12

1−S22

(39)

where in the last equality we used the fact that S21 = S12.
We extract R using the same method as we used in the
extraction of S11. From the knowledge of R, S11 and S22

one can easily invert (39) to calculate S12.
After we calculate S for the ports defined in Figure 7(a),

we shift both the left and right reference planes back to
the exact location of the junction using

SJ =
(
eikL=L 0

0 eikR=R

)
S
(
eikL=L 0

0 eikR=R

)
(40)

where =L = =R = 5� as defined in Figure 7(a) and SJ is
the effective scattering matrix for the case where the left
and right ports are projected back to coincide with the
junction plane.69 For the sake of notational abbreviation,
from this point on we will use S to imply SJ . Note that
this effective scattering matrix is defined just for the alge-
braic convenience of having a scattering matrix associated
directly with the position of the interface. The fields near
to the interface are not in fact just describable by these
single main modes because of various near field effects of
higher order modes.

Note that the polar plot of the reflection coefficients
is nothing other than the Smith chart of the microwave
theory,70 which we will use in Section 5.4.

5.3. Circuit Model for the Waveguide Junction

Another important approach in microwave waveguide
modeling is the use of equivalent circuit models, which can
give an intuitive picture of the system as well as allowing
the use of circuit simulators for design.

Here we relate the scattering matrix to simplified circuit
models that can characterize the MIM waveguide inter-
faces. Since we only have single propagating modes in the
guides we consider, we can also use equivalent transmis-
sion lines to describe the propagation between interfaces.

Taking these circuit and transmission line approaches
together, we can then model a broad range of MIM sys-
tems with circuit models.

There is no unique way to describe S using lumped cir-
cuit elements.71 To choose one circuit out of the infinite
possible set that could correspond to the same S, we will
first look at the well studied PEC case. The solution to
the scattering problem for the junction of two PEC par-
allel plate waveguides was developed and experimentally
verified.72 It consists of a capacitor with susceptance B and
a transformer with a turns ratio of n:1. The susceptance
and the turns ratio are described in terms of the geometry
of the junction. The square of the turns ratio of the trans-
former is equal to

n2 = a′

a
(41)

It is worthwhile remembering that the primary-secondary
turns ratio of the transformer, n:1, is also the ratio of
the voltages at its terminals. From the conservation of
power, currents have the inverse ratio and as a result
the impedance ratio at the transformer terminals is n2:1.
The derivation of the circuit elements for the PEC case
can be found in Refs. [73–75]. Note that for the PEC
case, only two parameters, B and n, are sufficient to
describe the junction even though in general three parame-
ters are required for a lossless reciprocal system. The non-
dispersive nature of the main mode of PEC parallel plate
waveguides leads to a further symmetry in the junction
which reduces the number of circuit parameters required.

At optical frequencies where the modes are strongly dis-
persive, a third circuit element is needed in order to be
able to fit the elements of S exactly. For that reason we
have an inductor term with a reactance X. A schematic of
the circuit diagram is shown in Figure 8(a). The PEC par-
allel plate waveguide circuit is the same, with X = 0. The
normalization that we defined in (36) leads to transmission
lines with a unit characteristic impedance on both sides
of the junction. From transmission line theory we get the
following equalities in terms of the equivalent impedance
looking from the left side of the circuit, Z1, and the equiv-
alent admittance looking from the right side, Y2

−S11 =
Z1 −1
Z1 +1

and −S22 =
1−Y2

1+Y2

(42)

where

Z1 = iX+ 1
iB+ �1/n2�

Y2 =
(

1
1+ iX

+ iB

)
n2

(43)

The reason why we have negative signs in front of S11 and
S22 in (42) is because we defined S based on the transverse
magnetic component of the main mode, Hy . However, the
norm in circuit parametrization is to use the voltage reflec-
tion and transmission coefficients, which correspond to
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Fig. 8. (a) Circuit description of the lossless (	m = −143�497) waveguide junction for 2a= 0�1� (�), 2a= 0�5� (�), 2a= 0�9� (•). (b) Square of
the turns ratio, n2, which is equivalent to the impedance ratio at the terminals of the transformer. Dashed line is the PEC result described by (41).
(c) Susceptance, B, for the MIM (�, �, •) and the PEC (�, �, ©) case. (d) Reactance, X, of the MIM waveguide. X = 0 for the PEC parallel plate
waveguide.

a scattering matrix description for the transverse electric
component, Ex. Just as in transmission line theory where
the reflection coefficient for voltage is the negative of that
of the current, the same relationship also holds exactly
between the reflection coefficients of Ex and Hy .

Let the real and imaginary parts of Z1 and Y2 be denoted
as ZR = Re�Z1�, ZI = Im�Z1�, YR = Re�Y2� and YI =
Im�Y2�. Using (43) we get

Bn2 = YI +YRZI

1−YRZR

and X = ZI +ZRYI

1−YRZR

(44)

Once we know Bn2 and X, we can calculate n2 using
(43) as

n2 = YR�1+X2�= ZR

[
1+ �Bn2�2

]
(45)

Using Eqs. (42), (44) and (45) one can calculate the circuit
parameters from S11 and S22. In Figures 8(b–d) we plotted
n2, B and X as a function of a′/a for the three different
fixed 2a values of 0�1�, 0�5� and 0�9�. It can be seen that
the PEC circuit description and the MIM circuit descrip-
tion lead to parameters which qualitatively have similar
behaviors.

5.4. Cascade Connection of Junctions

We now test the utility of the scattering matrix description
by numerically simulating mode propagation through a
cascade connection of junctions and comparing the results
with the predictions of the scattering matrix formalism.

When different scattering matrices are cascaded, the
transfer matrix, T, leads to a much simpler formulation76

(
H+

L

H−
L

)
=
(
T11 T12

T21 T22

)(
H−

R

H+
R

)
(46)

5.4.1. Conditions for Zero Reflection

In order to have H−
L = 0, one should have T21H

−
R +

T22H
+
R = 0, which can be cast in terms of the scattering

parameters as

S11H
−
R = �S11S22 −S12S21�H

+
R (47)

a. Lossy Case. Let us investigate the case when two
junctions characterized by two different scattering matri-
ces, LS and RS, are separated by a center waveguide of
length = as shown in Figure 9(a). Suppose that we adjust
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Fig. 9. (a) Schematic diagram of modal propagation. The left and right junctions are shown as boxes with an S matrix description. The center
waveguide is shown as a transmission line of length =. The source that creates the fields is normalized such that the mode that propagates to the right
has a unit magnitude at the input of the right junction. (b) Graphical solution of (50) and (51) on the complex plane. Point PL is the location of the
left junction on the LS22 curve where 2a= 0�9� and 2a′ = 0�5�. Point PR is the location of the right junction on the RS11 curve where 2a= 0�5� and
2a′ = 0�16�. (c) Test of the scattering matrix description. Horizontal axis is the length of the center waveguide normalized to �. Vertical axis is the
power reflection coefficient. FDFD simulation results �•�, transfer matrix calculations using lossy junctions (solid line) and lossless junctions (dashed
line) are also plotted. Transfer matrix calculations do take into account the loss in the center waveguide for both cases. As the junctions get very close
to each other �<0�1�� transfer matrix model begins to break down due to higher order modal interactions.

our excitation amplitude such that the mode that propa-
gates toward the right junction at its input plane, which is
the junction plane, has unit strength. That choice of nor-
malization leads to H−

R = eikC= and H+
R = RS11e

−ikC= where
kC is the wave vector of the center waveguide. With these
definitions, the condition for zero reflection, (47), for the
left junction can be written as

e−2ikC= =
LS11/

RS11
LS11

LS22 − LS12
LS21

For reciprocal media, S12 = S21, we can write

e−2ikC= =
LS11/

RS11
LS11

LS22 − LS2
21

(48)

b. Lossless Case. If the system is lossless, then the scat-
tering matrix should be unitary (SS† = 1) which implies
the following three conditions

�S11�2 = �S22�2 = 1−�S12�2
S12

S∗
21

=−S22

S∗
11

(49)

Using (48) and (49), the zero reflection condition becomes

�LS22� = �RS11� (magnitude condition) (50)

�
LS22 +�

RS11 = 2kC=+2;n (phase condition) (51)

where n is any integer value, superscripts R and L denote
right and left respectively. “�” is used to represent the
argument of a complex number. What this means is that,
to match a left waveguide to a right waveguide, one should
choose a center waveguide width which satisfies the mag-
nitude condition, and decide on the length of the center
waveguide based on the phase condition.

Once a matching left, center and right waveguide triplet
is found, the procedure can be recursively repeated to cas-
cade more junctions without getting any reflection at the
leftmost waveguide.

5.4.2. Mode Converter Design

Now that we have the conditions (48) and (50–51) for
zero reflection, we can test their validity. Condition (48) is
more general and is applicable to the lossy case. We did a
series of simulations in which we extracted S for a hypo-
thetical lossless metal with a real, negative permittivity
	m =−143�497. The results were very similar to the case
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where the loss was included. That led us to suspect that
the conditions for the lossless reciprocal junctions, (50)
and (51), would be essentially sufficient in the design of
a mode converter that converts the mode of a wavelength
sized MIM waveguide �2a = 0�9�� to that of a subwave-
length one with no reflection.

In our design we choose the left waveguide width to be
0�9� and the center waveguide width to be 0�5� as shown
in the inset in Figure 9(b). The parameters that we need
are the insulator width of the right waveguide, w, and the
length of the center waveguide, =.

The width of the right waveguide can be chosen by sat-
isfying (50). In Figure 9(b) PL is the location of the 2a=
0�9� to 2a′ = 0�5� junction on the LS22 curve. To satisfy
(50) we need to have �LS22� = �RS11�. The solution can be
graphically found by drawing a circle in the complex plane
with a radius �PL� centered at the origin and finding its
intersection with the RS11 curve. The intersection point is
denoted by PR. PR corresponds to a right waveguide thick-
ness of 0�16�. The phase condition (51) is then easily cal-
culated from the phases of the scattering coefficients, �PL

and �PR. After some simplification through the use of the
numerical value for kC one gets =/�= 0�1377+0�4861n,
where n is any positive integer.

To check our design, we numerically simulated the
structure shown in the inset of Figure 9(b) using FDFD and
looked at the amount of power reflected back as a function
of the center waveguide length =. We also calculated the
power reflection coefficient through the use of the trans-
fer matrix formalism in which we multiplied the transfer
matrices for the right junction, TR, a center waveguide of
length =, TC , and the left junction, TL, to get the over-
all transfer matrix T= TLTCTR, and plotted �T21/T11�2 of
T as a function of =/�. We did the calculations for two
different sets of /TR�TL2: one in which we used the scat-
tering matrices for the lossy junctions and another for the
lossless junctions. The center waveguide of length = had
loss in both cases i.e., kC = �1�03− i9�45×10−4�2;/�.

Figure 9(c) verifies that lossless junction models are
quite effective at modeling the waveguide discontinuities
and the prediction of the length of the center guide for zero
reflection reached by their use, =/� = 0�1377+ 0�4861n
is very accurate. The lossy junction model on the other
hand gives results essentially indistinguishable from the
simulation results as long as the two junctions are not
very close to each other (< 0�1�). When the junctions get
very close, the coupling of higher order non-propagating
modes becomes important and the single mode modeling
we employed in the construction of scattering matrices
breaks down. For such closely spaced junctions, the whole
structure should be treated as a single unit and its charac-
teristics should be extracted by the techniques described
in Section 5.2.

6. SUMMARY AND CONCLUSIONS

In this paper, we first gave an overview of the challenges
involved in modeling of plasmonic devices, and briefly
examined two general purpose simulation techniques which
are widely used for modeling of plasmonic waveguide
devices.

We then introduced the mode-matching technique for
modeling of MIM waveguide devices. We derived the
complete set of orthogonal modes that the MIM waveg-
uide supports. We showed that in addition to the previ-
ously unreported complex set of discrete modes, there also
exists a continuous set of modes. We then used the com-
plete set of modes to apply the mode-matching technique
in the investigation of modal scattering at the symmet-
ric junction of two MIM waveguides with different cross
sections.

This special purpose simulation technique is far more
efficient for this class of problems than general purpose
electromagnetic simulation techniques. The knowledge of
the set of orthogonal modes which form a complete basis
for a given geometry leads to a much more simplified
algebra and speeds up calculations. These results are valu-
able for electromagnetic scattering calculations involving
the MIM geometry. The analysis can also be generalized
for other related geometries involving metals at optical
frequencies.77–81

We also introduced several different equivalent mod-
els for plasmonic waveguide components. We first showed
that the characteristic impedance model can accurately
model the behavior of deep subwavelength MIM waveg-
uides. We also extracted the scattering matrices of junc-
tions of different geometries from full field solutions, and
parametrized the scattering matrix of the MIM junction in
terms of lumped circuit elements. We validated our char-
acterization by designing a mode converter that concen-
trates light from an MIM waveguide of wavelength-sized
dimension to one of subwavelength dimension with zero
reflection.

The model abstraction provided by these equivalent
models is important for the analysis and synthesis of
device functions.82–85 The circuit representation of the
junction helps us associate the effects of geometry, mate-
rial properties and wave propagation in terms of a sim-
ple network of a capacitor, inductor and a transformer.
The scattering matrix description of junctions can be
used to design optical circuitry with complex function-
ality using tools of circuit analysis.86�87 It is conceiv-
able to build a library of junction geometries associated
with their scattering matrices for different waveguides
including three dimensional nano-metallic ones.88 Such a
library, indexed according to modal scattering and prop-
agation properties, would be invaluable in the design of
integrated optical circuits composed of many interacting
components.

1824 J. Comput. Theor. Nanosci. 6, 1808–1826, 2009



R
E
V
IE
W

Veronis et al. Modeling of Plasmonic Waveguide Components and Networks

References

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824
(2003).

2. E. Ozbay, Science 311, 189 (2006).
3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi,

Opt. Lett. 22, 475 (1997).
4. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet,

Phys. Rev. B 60, 9061 (1999).
5. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno,

A. Leitner, and F. R. Aussenegg, Europhys. Lett. 60, 663 (2002).
6. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B

62, R16356 (2000).
7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E.

Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen,

Phys. Rev. Lett. 95, 046802 (2005).
9. E. N. Economou, Phys. Rev. 182, 539 (1969).

10. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt.
Soc. Am. A 21, 2442 (2004).

11. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys.
Rev. B 73, 035407 (2006a).

12. E. Feigenbaum and M. Orenstein Journal of Lightwave Technology
25, 2547 (2007a).

13. R. Gordon, Phys. Rev. B 73, 153405 (2006).
14. Z. Han and S. He, Opt. Commun. 278, 199 (2007).
15. G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
16. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
17. G. Veronis and S. Fan, Opt. Express 15, 1211 (2007a).
18. P. Ginzburg and M. Orenstein, Opt. Express 15, 6762 (2007).
19. J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928

(2006b).
20. Y. Jiao, S. Fan, and D. Miller, IEEE Journal of Quantum Electronics

42, 266 (2006).
21. W. Suh, Z. Wang, and S. Fan, IEEE Journal of Quantum Electronics

40, 1511 (2004).
22. J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and

M. Soljacic, Journal of Lightwave Technology 25, 2539 (2007).
23. S. Fan, M. F. Yanik, Z. Wang, S. Sandhu, and M. L. Povinelli,

Journal of Lightwave Technology 24, 4493 (2006).
24. L. Novotny, B. Hecht, and D. Pohl J. Appl. Phys. 81, 1798 (1997).
25. E. Prodan, P. Nordlander, and N. Halas, Chem. Phys. Lett. 368, 94

(2003).
26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light

by Small Particles, Wiley Science, New York (1983).
27. E. D. Palik, Handbook of Optical Constants of Solids, Academic,

New York (1985).
28. A. Taflove and S. C. Hagness, Computational Electrodynamics,

Artech House, Boston (2005).
29. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl.

Opt. 37, 5271 (1998).
30. M. Han, R. Dutton, and S. Fan, IEEE Microwave and Wireless Com-

ponents Letters 16, 119 (2006).
31. A. Vial, A. Grimault, D. Macias, D. Barchiesi, and M. de la

Chapelle, Phys. Rev. B 71, 85416 (2005).
32. J. Jin, The Finite Element Method in Electromagnetics, John Wiley

& Sons, New York (2002).
33. P. Berini, Phys. Rev. B 61, 10484 (2000).
34. G. Veronis, R. W. Dutton, and S. Fan, Opt. Lett. 29, 2288 (2004).
35. J. Berenger, J. Comput. Phys. 114, 185 (1994).
36. J. Young and R. Nelson, IEEE Antennas and Propagation Magazine

43, 61 (2001).
37. P. J. B. Clarricoats and K. R. Slinn, Proceedings of the Institution

of Electrical Engineers (1967), Vol. 114, p. 878.
38. P. Bienstman, Ph.D. thesis, Ghent University, Belgium (2001).
39. I. Breukelaar and P. Berini, Journal of the Optical Society of

America A 23, 1971 (2006).

40. I. Breukelaar, R. Charbonneau, and P. Berini, J. Appl. Phys. 100,
043104 (2006).

41. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, Phys. Rev. B 76,
035408 (2007).
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