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Few-photon transport in a waveguide coupled to a pair of colocated two-level atoms
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We calculate the one- and two-photon scattering matrices of a pair of collocated nonidentical two-level atoms
coupled to a waveguide. We show that by proper choice of a two-photon input, the background fluorescence by
the atoms may be completely quenched, as a result of quantum interference, and that when the atoms’ detuning
is smaller than their linewidths, extremely narrow fluorescence features emerge. Furthermore, the system emits a
two-photon bound state which can display spatial oscillations or quantum beats, and can be tuned from bunched
to antibunched statistics as the total photon energy is varied.
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I. INTRODUCTION

There has been substantial recent interest in the study of
photon-atom interactions, where microwave [1–5] and optical
[6–17] photons are confined to a single-mode waveguide.
From a practical point of view, quantum states of light are
important carriers of information in quantum information
and quantum computing systems. The use of waveguides to
connect qubits can enable entanglement transfer [16,18], and
is important for integration. From a more basic point of view,
the one-dimensional nature of photon states in a single-mode
waveguide leads to a number of novel physics effects in
photon-atom interactions, as well as device possibilities. For
example, confinement of photons to one dimension enables
the complete reflection of a single photon from a two-level
atom [2], and the full inversion of an atom with a single-photon
pulse [10]. Furthermore, it has been shown that when two
photons scatter off a two-level system, a photon-photon bound
state and an associated background fluorescence emerge [3].
Recently, logic operations at the single-photon level through
the use of a three-level system in a waveguide have been
investigated [19].

In this work, we consider a waveguide coupled to two
nonidentical quantum two-level systems, as shown in Fig. 1,
and study few-photon transport. By two-level atoms, we are
primarily concerned with on-chip atomlike objects, such as
superconducting qubits [1] or quantum dots [7]. These objects
can be described by the same two-level Hamiltonian as a real
atom, hence our nomenclature. However, in contrast to real
atoms, one of the distinct properties of these atomlike objects
is their tunability [5,20–22]. Our predicted effects exploit the
tunability of these atomlike objects.

Here we show that the two-atom system can be solved
exactly in the two-photon Hilbert space, using input-output
formalism [23] adapted for the calculations of few-photon
Fock-state transport [24]. The results point to a rich set
of physics, some of which may be important to device
applications. Previously, this system was studied at the one-
photon level [8,25], and was shown to exhibit a single-photon
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transmission spectrum that is the analogous to electromagnet-
ically induced transparency (EIT) [8]. Quantum entanglement
and modification of spectral features via a resonant laser
[26], as well as spatial modulation of spontaneous emission
decay [27] were both studied in two identical two-level atoms
in free space. Multiphoton scattering in a waveguide was
studied only in multiple identical atoms [28]. Here we show
that allowing for nonidentical atoms enables fluorescence
linewidth narrowing and quenching, as well as new capabilities
to design and control the properties of photon-photon bound
states. These two-photon bound states can exhibit bunching or
antibunching statistics. The two photons forming the bound
states can have very different frequencies. Moreover, the
properties of the bound state, including its spatial extent,
are strongly dependent on the resonant frequencies of the
atoms. None of these characteristics have been observed in
waveguide-atom systems consisting of either a single two-level
atom or a single three-level atom.

Two-photon bound states represent a composite particle of
photons, and are of substantial interest in quantum lithography
and imaging [29]. Our results show that in the two-atom system
there is enhanced capability for generation and control of
such a composite quantum object. Also, one typically expects
two-photon bound states to arise from effective photon-photon
attraction, and thus one typically expects the two-photon bound
state to exhibit a bunching behavior. Indeed, only bunched
two-photon bound states have been seen in all waveguide-
atom [3,30], and waveguide-nonlinear-cavity [14] systems
previously considered. In this context, our result, showing an
antibunched two-photon state, is counterintuitive, and points to
the substantial richness in physics of photon-photon interaction
in the two-atom system that is qualitatively different from all
previously considered systems.

II. SYSTEM HAMILTONIAN AND EQUATIONS
OF MOTION

For the system shown in Fig. 1, the waveguide supports both
left and right propagating photon modes, though the photon-
atom interaction is entirely contained in the even subspace
[3]. This subspace features a chiral photonic band interacting
with two atoms, which in the rotating-wave approximation is
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FIG. 1. (Color online) Schematic representation of a pair of
nonidentical two-level atoms in a waveguide geometry. k1,2 and p1,2

denote the incoming and scattered photons, respectively. �1,2 and
τ1,2 are the transition frequencies and decay times of the two atoms,
respectively.

described by the Hamiltonian (h̄ = 1; the waveguide group
velocity is set to vg = 1):

Ĥ =
∫

dk k a
†
kak + V1

∫
dk[a†

kσ
(1)
− + σ

(1)
+ ak] + 1

2
�1σ

(1)
z

+ 1

2
�2σ

(2)
z + V2

∫
dk[a†

kσ
(2)
− + σ

(2)
+ ak], (1)

where �1 and �2 are the atoms’ transition frequencies; V1,2

are their respective coupling strengths to the waveguide field,
and are related to the spontaneous decay rate of each atom by

1
τ1,2

= πV 2
1,2. ak (a†

k) destroys (creates) a waveguide photon

with energy k, and satisfies [ak,a
†
k′] = δ(k − k′). σ

(1,2)
∓ are

the lowering and raising operators for each atom. Once the
S matrix of the chiral mode is determined, the transport
properties of the system in Fig. 1 may be obtained using
standard techniques [3].

To solve the few-photon Fock-state transport properties for
the Hamiltonian in Eq. (1), following Ref. [24] we define
the input, ain(t) = (2π )−1/2

∫
dke−ik(t−t0)ak(t0), and output,

aout(t) = (2π )−1/2
∫

dke−ik(t−t1)ak(t1), operators. Here, t0 and
t1 refer to times long before (t0 → −∞) and long after
(t1 → +∞) the photons interact with the atoms. Following
the procedure in Refs. [23,24], we arrive at the input-output
formalism equations,

aout(t) = ain(t) − i

√
2

τ1
σ

(1)
− (t) − i

√
2

τ2
σ

(2)
− (t), (2)

dσ
(1)
− (t)
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= −i

(
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1

τ1

)
σ

(1)
− (t)

+ i

√
2

τ1
σ (1)

z (t)ain(t) + σ (1)
z (t)σ (2)

− (t)√
τ1τ2

, (3)

dσ
(2)
− (t)

dt
= −i

(
�2 − i

1

τ2

)
σ

(2)
− (t)

+ i

√
2

τ2
σ (2)

z (t)ain(t) + σ (2)
z (t)σ (1)

− (t)√
τ1τ2

. (4)

We note that the inclusion of a dipole-dipole interaction term
in Eq. (1) of the form g(σ (1)

+ σ
(2)
− + σ

(2)
+ σ

(1)
− ), where g is the

coupling rate, may be accounted for by making the replacement
(τ1τ2)−1/2 �→ (τ1τ2)−1/2 + ig in the last term in Eqs. (3) and
(4). The solution in this case would carry on in a similar
fashion. Here, we exclude the dipole-dipole term.

Below, we will solve Eqs. (3) and (4) to obtain the single-
photon scattering amplitudes 〈p−|k+〉 ≡ 〈0|aout(p)a†

in(k)|0〉,
and the two-photon scattering amplitude 〈p1p

−
2 |k1k

+
2 〉 =

〈0|aout(p1)aout(p2)a†
in(k2)a†

in(k1)|0〉. Here the k’s and p’s are
incident and outgoing free-photon energy, respectively.

III. ONE-PHOTON SCATTERING MATRIX

Fourier transforming of Eq. (2) leads to the single-photon
scattering amplitude,

〈p−|k+〉 = 〈0|ain(p)|k+〉 − i
∑
n=1,2

√
2

τn

〈0|σ (n)
− (p)|k+〉.

(5)

In order to calculate 〈0|σ (1,2)
− (p)|k+〉, we use Eqs. (3)

and (4) and solve for 〈0|σ (1,2)
− (t)|k+〉. The solution results in

〈0|σ (1,2)
− (p)|k+〉 = s

(1,2)
k δ(k − p), where

s
(1,2)
k =

√
2

τ1

(k − �2,1)(
k − �1 + i 1

τ1

)(
k − �2 + i 1

τ2

) + 1
τ1τ2

(6)

are the excitation amplitudes of the two atoms. We plug
Eq. (6) into Eq. (5) to obtain the one-photon scattering matrix
〈p−|k+〉 = tkδ(k − p) where

tk =
(
k − �1 − i 1

τ1

)(
k − �2 − i 1

τ2

) + 1
τ1τ2(

k − �1 + i 1
τ1

)(
k − �2 + i 1

τ2

) + 1
τ1τ2

.

IV. TWO-PHOTON SCATTERING MATRIX

The two-photon scattering matrix can be written as

〈0|aout(p1)aout(p2)a†
in(k2)a†

in(k1)|0〉

= tp1〈p+
1 |ain(p2) − i

√
2

τ1
σ

(1)
− (p2) − i

√
2

τ2
σ

(2)
− (p2)|k1k

+
2 〉,

where we have used Eq. (5). We are then tasked with calculat-
ing the matrix elements 〈p+

1 |σ (1,2)
− (p2)|k1k

+
2 〉. For this purpose

we again use Eqs. (3) and (4) to get a coupled differential equa-
tion for 〈p+

1 |σ (1,2)
− (t)|k1k

+
2 〉 with inhomogenous terms of the

type 〈p+
1 |σ (1,2)

z (t)ain(t)|k1k
+
2 〉 and 〈p+

1 |σ (1)
z (t)σ (2)

− (t)|k1k
+
2 〉.

From the definition of ain(t) one can straightforwardly show
that [24]

〈p+
1 |σ (1,2)

z (t)ain(t)|k1k
+
2 〉

= 1√
2π

{
ei(p1−k1−k2)t

π
s∗(1,2)
p1

[
s

(1,2)
k1

+ s
(1,2)
k2

]
− e−ik1t δ(k2 − p1) − e−ik2t δ(k1 − p1)

}
.

In solving for 〈p+
1 |σ (1)

z (t)σ (2)
− (t)|k1k

+
2 〉, we note

〈p+
1 |σ (1)

z (t)σ (2)
− (t)|k1k

+
2 〉

= 2〈p+
1 |σ (1)

+ (t)|0〉〈0|σ (1)
− (t)σ (2)

− (t)|k1k
+
2 〉

− 〈p+
1 |σ (2)

− (t)|k1k
+
2 〉.

As a result, we are left with calculating the matrix element
〈0|σ (1)

− (t)σ (2)
− (t)|k1k

+
2 〉. From Eqs. (3) and (4), we can derive
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an operator equation,

d

dt
[σ (1)

− (t)σ (2)
− (t)]=−i

(
�1 + �2− i

1

τ1
− i

1

τ2

)
σ

(1)
− (t)σ (2)

− (t)

+ i

√
2

τ1
σ (1)

z (t)σ (2)
− (t)ain(t) + i

√
2

τ2
σ (2)

z (t)σ (1)
− (t)ain(t),

(7)

where we have used the operator identity,

[ain(t),σ (1,2)
− (t)] = 0. (8)

[Equation (8) is proved in Appendix.] Equation (7) can then
be used to solve for 〈0|σ (1)

− (t)σ (2)
− (t)|k1k

+
2 〉. At this stage, we

have calculated all the prerequisite inhomogeneous terms in
the coupled differential equations for 〈p+

1 |σ (1,2)
− (t)|k1k

+
2 〉. The

resulting two-photon S matrix is

〈0|aout(p1)aout(p2)a†
in(k2)a†

in(k1)|0〉 = tp1 tp2 [δ(k1 − p1)δ(k2 − p2) + δ(k1 − p2)δ(k2 − p1)]

+
{

i

π

√
2

τ1
s(1)
p1

s(1)
p2

[
s

(1)
k1

+ s
(1)
k2

] + i

π

√
2

τ2
s(2)
p1

s(2)
p2

[
s

(2)
k1

+ s
(2)
k2

]

+
(

s(1)
p1

s(1)
p2

+ s(2)
p1

s(2)
p2

π
√

τ1τ2

)√
2
τ1

[
s

(2)
k1

+ s
(2)
k2

] +
√

2
τ2

[
s

(1)
k1

+ s
(1)
k2

]
(
Ei − �1 − �2 + i 1

τ1
+ i 1

τ2

)
}

δ(Ei − Eo), (9)

where Ei ≡ k1 + k2 and Eo ≡ p1 + p2.
Knowing the S matrix of the chiral model which contains the

photon-atom interaction, the full S matrix for the waveguide
system in Fig. 1, which has both the left- and right-going
photons, can then be constructed straightforwardly [3]. In
particular, the fluorescence spectra of the transmitted and
reflected photons are described by the same last three terms in
Eq. (9). Below, we will discuss the results for the waveguide
system shown in Fig. 1.

Examining Eq. (9), the first term describes an uncorrelated
transport process where the energy of individual photons is
conserved. The following three terms, which we collectively
label B(k1,2,p1,2)δ(Ei − Eo), describe the fluorescence pro-
cess where only the total energy of the photons, but not the
individual energies, is conserved. In particular, the second and
third terms represent fluorescence from each individual atom.
The fourth term arises from the joint fluorescence in which
both atoms are excited simultaneously, and contains a two-
photon pole. These different fluorescent pathways interfere
coherently, leading to a complex set of interesting effects.

V. RESULTS

A. Fluorescence linewidth narrowing

In Fig. 2 we plot the spectrum of fluorescence
|B(k1,2,p1,2)/τ |2, in the two-dimensional space spanned by
the �i ≡ (k1 − k2)/2 and �o ≡ (p1 − p2)/2 axes. We assume
the two atoms have identical waveguide coupling rates of
γ ≡ 1/τ , but generally different resonant frequencies, and
define �c ≡ �1+�2

2 ; �d ≡ �1−�2
2 . In Figs. 2(a)–2(c), we

plot the fluorescent spectrum for incident two photons with
total energy Ei = 2�c + 3γ . Examining Eq. (9), we see
that in the �i-�o plane, the poles of B(k1,2,p1,2) are the
same as the poles of the atomic excitations (s(1,2)

k1,2
,s(1,2)

p1,2
)

with single-photon input. The atomic excitation exhibits
a subradiant state with poles corresponding to outgoing

momenta p1,2 ≈ �c − i�2
d/γ , and a super-radiant state with

poles corresponding to outgoing momenta p1,2 = �c − 2iγ .
Consequently when the atoms’ detuning is smaller than
their linewidth (�d < γ ), the fluorescent features are quite
narrow [Fig. 2(b)]. At zero detuning, however, the subra-
diant state has zero linewidth and no longer couples to
externally incident photons. As a result, the fluorescence is
dominated by the super-radiant poles [Fig. 2(c)], and the
fluorescent linewidth is doubled compared to a single atom’s
fluorescence.

FIG. 2. (Color online) Plot of the normalized resonance fluo-
rescence, |B(k1,2,p1,2)/τ |2, assuming τ1 = τ2 = τ = 1/γ . �c, �d ,
and �i,o are defined in the main text. Let Ē ≡ (E − 2�c)τ and
�̄i,o ≡ �i,oτ . (a) Ē = 3, �d = γ . (b) Ē = 3, �d = 0.5γ . (c) Ē = 3,
�d = 0. (d) Ē = 0.

063832-3
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B. Fluorescence quenching and two-photon resonance

Fluorescence is typically an unavoidable signature of
interaction between an atom and multiple photons, since it
arises from the inelastic scattering of one photon off an
excited atom [3]. Here, as shown in Fig. 2(d), the fluorescence
completely vanishes provided the total energy of the incident
photons satisfies Ei = �1 + �2. Fluorescence quenching was
previously noted in a driven three-level system [31]. Here we
show that quenching can occur in a system with two two-level
atoms.

The effect of fluorescence quenching is closely related to
the existence of a two-photon pole in the S matrix, which
provides the necessary pathway to cancel the contribution from
the fluorescence of individual atoms. The existence of a two-
photon pole indicates that the two atoms can be simultaneously
excited by two photons, as long as the sum of the photon energy
is near the sum of the transition energy of the two atoms.

Whether a two-atom system can exhibit a two-photon
pole has been an interesting question. In Ref. [32] it is
argued that in the absence of dipole-dipole interaction [33],

simultaneous excitation is not possible classically. The authors
have also shown that simultaneous excitation is possible when
the photon pair is frequency entangled, or when the two
atoms interact via a quantized cavity field [34]. Our contri-
bution is in showing the connection between the two-photon
pole in the joint excitation of the atoms and fluorescence
quenching.

C. Generation and control of two-photon bound states

For an incoming state comprising two right-going photons
with individual energies k1 and k2, the resultant transmitted
two-photon state is

|ψR〉 =
∫

dx1dx2

[
t̄k1 t̄k2Sk1,k2 (x1,x2) + 1

4
H (x1,x2)

]
|x1,x2〉RR.

Here t̄k = (tk + 1)/2 is the single-photon transmission
amplitude. Sk1,k2 (x1,x2) = 1

2π
√

2
[ei(k1x1+k2x2) + ei(k1x2+k2x1)],

and |x1,x2〉RR = 1√
2
c
†
R(x1)c†R(x2)|0〉 where [cR(x),c†R(x ′)] =

δ(x − x ′).

H (x1,x2) =
√

2

τ1

s
(1)
k1

+ s
(1)
k2

π

[
F1(x1,x2)

(
1 − i

Daτ2

)
+ F2(x1,x2)

( −i

Daτ2

)]

+
√

2

τ2

s
(2)
k1

+ s
(2)
k2

π

[
F1(x1,x2)

( −i

Daτ1

)
+ F2(x1,x2)

(
1 − i

Daτ1

)]
,

where

F1,2(x1,x2) ≡
√

2eiEi (
x1+x2

2 )

τ1,2DaDb

{
eiD1|x1−x2|[D2

1 − (
Ei

2 − �2,1
)2]

Da + Db

− eiD2|x1−x2|[D2
2 − (

Ei

2 − �2,1
)2]

Da − Db

}
,

with D1,2 ≡ (Da ± Db)/2, Da ≡ Ei − 2�c + i/τ1 + i/τ2,
Db ≡ [4�2

d + 4i�d (1/τ1 − 1/τ2) − (1/τ1 + 1/τ2)2]1/2. |ψR〉
contains an uncorrelated-transport extended plane-wave term
[t̄k1 t̄k2Sk1,k2 (x1,x2)], and a bound-state term, [ 1

4H (x1,x2)],
which arises directly from fluorescence.

Since |RR〈x1,x2|ψR〉|2 = 〈ψR|a†
R(x2)a†

R(x1)aR(x2)aR(x1)
|ψR〉 is proportional to the joint-detection probability density
P

(R)
2 (x1 − x2), this wave function therefore can be exper-

imentally probed in a Hanbury Brown-Twiss coincidence
measurement, with x = x1 − x2 being the difference in optical
path length from each detector to the beam splitter.

The transmission amplitude t̄k vanishes when k = �1,2,
making it possible to eliminate the uncorrelated part of |ψR〉
by choosing k1 = �1, which we do in Fig. 3. By doing so, the
transmitted two-photon wave function is entirely described by
the function H (x1,x2), which represents a two-photon bound
state that decays with respect to the photon spacing x = x1 −
x2.

When k2 = �c, P
(R)
2 (x) exhibits a bunching behavior with

a global maximum at x = 0, as shown in Fig. 3(a). As one
decreases k2 from this value, a local minimum at x = 0 starts
to develop, indicating antibunching [35], which increases as
k2 → �+

2 . In this system, therefore, the two-photon bound

state can exhibit either a bunching or an antibunching behavior.
This is in contrast to the one-atom case [3], where the bound
state by itself is always bunched. It is also different from the
typical resonance fluorescence experiments with a classical
input state, where antibunching is observed [36].

In Fig. 3(b) the transmitted bound state is plotted for a large
atomic detuning of �d = 6γ , exhibiting spatial oscillation or
quantum beats with a period of 2π/|Db|. A two-photon plane
wave Sk1,k2 (x1,x2) has a P

(R)
2 (x1 − x2) that oscillates with a

spatial period of k1 − k2 where k1,2 are the energy of the two
individual photons. Similarly, the quantum beats here indicate
that the bound state is two colored, with the single-photon
energies centered approximately at �1 and �2. Previously, the
second-order correlation function of two atoms driven by a
coherent laser field was shown to display similar oscillations
which are governed by the atomic detuning [37]. Here we note
the connection between these oscillations and the spatial wave
function of the two-photon bound state.

Finally, we note that the spatial extent of the bound state is
strongly dependent upon the atomic detuning �d , in the region
where �d < γ . In Fig. 3(c), P (R)

2 (x) is plotted for three values
of �d satisfying �d/γ < 1, with k2 − �2 = �d . For these
values of �d , the subradiant poles of the scattering matrix,
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FIG. 3. (Color online) P
(R)
2 (x), the joint detection probability density of the transmitted two-photon state. (a) k1 = �1, �d = 2γ , (k2 −

�2) = {2,1, 1
4 }γ in solid black, dotted blue, and dashed red curves, respectively. (b) k1 = �1, �d = 6γ , (k2 − �2) = {6,0.25}γ in solid black

and dashed red curves, respectively. In (a) and (b), insets show the frequency k2 overlaid on the single-photon transmission |t̄k|2. (c) k1 = �1,
k2 = �c = {0.75,0.5,0.25}γ for the black (solid), blue (dotted), and red (dashed) curves, respectively.

whose imaginary parts strongly depend on �d , dominate the
bound-state response. Consequently, as shown in Fig. 3(c), the
spatial extent of the bound state can be significantly wider
than the one-atom bound state. Taken together, Figs. 3(a)–3(c)
demonstrate the significant ability of the two-atom system to
control the properties of the two-photon bound state, including
its spatial extent, quantum beats, and statistics.

D. Experimental considerations

We end by discussing some practical considerations rele-
vant in experimental study of this system. All predicted effects
in the paper require that the atomic resonance frequencies
be close to each other. With respect to the tuning of atom
resonance frequencies, we note that tuning of quantum
dots in the optical frequency range has been achieved via
magnetic fields [20], the application of a dc voltage [21], and
through thermal heating [22]. In the microwave, the ability
to independently tune the transition frequencies of individual
qubits has recently been demonstrated [5]. It is conceivable that
some of these techniques can be further developed to achieve
independent tuning of two closely spaced qubits, particularly
in the microwave frequency range.

We also assumed that each atom predominantly couples to
the waveguide (i.e., that the system has a high β factor). (The β

factor measures the fraction of the spontaneous emission going
into the guided mode.) A high β factor has been reported in
the experiments of Refs. [38,39]. A value of β < 1 may be
accounted for by replacing each resonant frequency �1,2 with
�1,2 − iγ

(ng)
1,2 where γ

(ng)
1,2 are the respective coupling rates of

each atom into nonguided modes. Consequently, a nonunity β

will lead to the further narrowing of the fluorescence features
in Fig. 2(b), and to the further broadening of the fluorescent
features in Figs. 2(a) and 2(c).

The main result of this paper [i.e., the two-photon S matrix
in Eq. (9)], is valid for two atoms with either identical or non-
identical atom-waveguide coupling rates. As for the predicted
effects, linewidth narrowing and the various properties of the
bound state persist for atoms with nonidentical waveguide
coupling rates. Complete fluorescence quenching, however,
requires that the coupling rates be identical. For this purpose,
we note that, in the microwave frequency range, Ref. [5] has
demonstrated the capability of tuning the qubit coupling rate.

We have calculated the response of the system to a two-
photon Fock state input. The predictions about the properties
of the transmitted two-photon state can be observed by a
correlation measurement with a weak coherent state input,
which can be generated with an attenuated laser beam [3]. The
frequency linewidth of such a beam can in principle be made
narrower than any of the spectral features that we predict here.
Alternatively, we note the recent development of deterministic
single-photon sources [40] as well as the demonstration of
single-photon pulses with arbitrary temporal shapes [41],
both of which may facilitate the experimental study of this
system.

In our calculations, we have presented the S matrix for two
incident photons, each having well-defined energy k1 and k2.
Any experiment, of course, uses a source with nonzero spectral
bandwidth. The spectrum of the output state is a product
of the scattering matrix and the spectrum of the input state,
and thus can be directly calculated using Eq. (9). Since the
fluorescence is already in the spectral domain, the use of a
nonzero bandwidth input should not affect the results of such
spectral measurement. In Fig. 3, we have shown that a pure
two-photon bound state can be generated when one of the
incident photons is on resonance with one of the atoms. The
use of a photon pulse would therefore result in a background
amplitude due to uncorrelated transport, in addition to the
bound state. This background, however, can be made to be
very weak, provided that the incident spectrum is significantly
narrower than the atomic linewidth.

APPENDIX: PROOF OF EQ. (8)

From the Hamiltonian in Eq. (1), an equation of motion for
ak(t) may be derived,

d

dt
ak(t) = −iak(t) − iV1σ

(1)
− (t) − iV2σ

(2)
− (t). (A1)

Equation (A1) may be solved by integrating from time t0:

ak(t) = ak(t0)e−ik(t−t0) − iV1

∫ t

t0

dt ′eik(t ′−t)σ
(1)
− (t ′)

− iV2

∫ t

t0

dt ′eik(t ′−t0)σ
(2)
− (t ′). (A2)
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Multiplying Eq. (A2) by 1√
2π

and integrating over k while taking the limit t0 → −∞, we obtain

ain(t) = 1√
2π

∫
dk ak(t) + i

√
1

2τ1
σ

(1)
− (t) + i

√
1

2τ2
σ

(2)
− (t),

where we have used the definition of ain(t) from Sec. II. It then follows that

[ain(t),σ (1)
− (t)] = 1√

2π

∫
dk[ak(t),σ (1,2)

− (t)] + i

√
1

2τ1
[σ (1)

− (t),σ (1,2)
− (t)] + i

√
1

2τ2
[σ (2)

− (t),σ (1,2)
− (t)] = 0.

[1] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[2] J.-T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001
(2005).

[3] J.-T. Shen and S. Fan, Phys. Rev. A 76, 062709 (2007).
[4] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Y. A.

Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S.
Tsai, Science 327, 840 (2010).

[5] J. M. Gambetta, A. A. Houck, and A. Blais, Phys. Rev. Lett.
106, 030502 (2011).

[6] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J.
Kippenberg, K. J. Vahala, and H. J. Kimble, Nature (London)
443, 671 (2006).

[7] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov,
P. R. Hemmer, H. Park, and M. D. Lukin, Nature (London) 450,
402 (2007).

[8] J.-T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, Phys. Rev. B
75, 035320 (2007).

[9] L. Zhou, Z. R. Gong, Y.-X. Liu, C. P. Sun, and F. Nori, Phys.
Rev. Lett. 101, 100501 (2008).

[10] E. Rephaeli, J.-T. Shen, and S. Fan, Phys. Rev. A 82, 033804
(2010).

[11] P. Longo, P. Schmitteckert, and K. Busch, Phys. Rev. Lett. 104,
023602 (2010).

[12] T. Shi, S. Fan, and C. P. Sun, Phys. Rev. A 84, 063803 (2011).
[13] D. Roy, Phys. Rev. B 81, 155117 (2010).
[14] J.-Q. Liao and C. K. Law, Phys. Rev. A 82, 053836

(2010).
[15] H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. A 82,

063816 (2010).
[16] A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-

Moreno, C. Tejedor, and F. J. Garcia-Vidal, Phys. Rev. Lett.
106, 020501 (2011).

[17] P. Kolchin, R. F. Oulton, and X. Zhang, Phys. Rev. Lett. 106,
113601 (2011).

[18] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev.
Lett. 78, 3221 (1997).

[19] D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin,
Nat. Phys. 3, 807 (2007).

[20] D. Haft, C. Schulhauser, A. O. Govorov, R. J. Warburton,
K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff,
Physica E: Low-dimensional Systems and Nanostructures 13,
165 (2002).
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