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We extend the Krylov-subspace-based time-dependent
numerical simulation technique for a qubit interacting with
photons in a waveguide to the multiple qubit case. We
analyze photon scattering from two qubits and derive ex-
pressions for the bound states in the continuum (BICs).
We show how the BIC can be excited. We use the BIC
in a recent Pauli-Z gate proposal involving decoherence free
subspaces and obtain the gate fidelity as a function of the
gate parameters. The techniques presented in this Letter are
useful for investigating the time evolution of quantum gates
and other many-body systems with multiple quenches in
the Hamiltonian. © 2016 Optical Society of America

OCIS codes: (230.7370) Waveguides; (270.5585) Quantum

information and processing; (270.4180) Multiphoton processes.
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Experimental advances in transmission line integrated super-
conducting qubits [1] and atoms coupled to the near fields
of waveguides [2] have made it possible to build systems com-
posed of multiple qubits, paving the way to the development
of quantum information processing architectures. The investi-
gation of such waveguide integrated multi-qubit systems in the
single-photon regime was primarily made through the
application of the transfer matrix technique [3,4]. The multiple
excitation case was analyzed in [5] under the Markovian
approximation—i.e., assuming that the time it takes for pho-
tons to propagate between the qubits is small compared to the
inverse of the atomic decay rate—and then extended to the
non-Markovian case [6–8] where, in both instances, the wave-
guide dispersion, ωk, is assumed to be a linear function of the
wave vector k. When one takes into account the dispersive
nature of the modes of the waveguide, it becomes possible to
form polaritonic atom-photon bound states where the photon
gets trapped around the atom. Properties of the bound states
were first analyzed for a single atom within a uniform photonic
bandgap medium [9], and then in waveguiding geometries
[10,11]. Scattering of photonic wavepackets from bound states
was analyzed in [12–14]. Signatures of the bound states are
now being probed in experiments [15,16].

Multi-photon, multi-qubit systems are very relevant for
quantum information processing; however, exact analysis of
their behavior is an arduous task. Therefore, it is of interest

to be able to study their dynamics independently via numerical
methods. Recently, a Krylov-subspace-based time evolution
technique has been developed to study the scattering of one-
and two-photon wave packets from a waveguide embedded
qubit [17–19] where the waveguide is modeled as a series of
cavities coupled to one another in a tight-binding fashion, lead-
ing to a cosine-shaped dispersion relationship. Recent advances
in ultrahigh-Q coupled nanocavities [20] and photonic crystal
waveguides operating near their band edge [15,16] make the
underlying dispersive model pertinent. In this Letter, we will
first generalize the Krylov-subspace-based technique to the
multi-qubit case, and then use the new technique to investigate
various multi-qubit scenarios involving photon scattering, time
evolution of a doubly excited two-qubit system, and a recent
Pauli-Z gate proposal.

We begin by extending the single-qubit Hamiltonian, writ-
ten under the rotating-wave and dipole approximations, and
introduced in [17–19], to the multiple qubit case. The new
Hamiltonian is given by H � −J

PL−1
i�1�a†i�1ai � a†i ai�1��Pn

s�1�Ωs
2
σzs � g s�σ�s axs � a†xsσ

−
s ��, where J is the coupling

constant between neighboring cavities; ai is the annihilation
operator for photons at position i; and fΩs ; g s; σzs ; σ

�
s g are the

energy level spacing, the coupling constant, the Pauli z oper-
ator, and the raising and lowering operator, respectively, for
qubit s positioned at xs. There are n qubits and L cavities.
In writing H , we took ℏ � 1, assumed a normalized distance
between neighboring cavities (a � 1), and measured energies
with respect to the resonant frequency of the cavities (ω0 � 0)
[20]. With this normalization, the dispersion relation for the
coupled cavity array, ω0 − 2J cos�ka�, is transformed to ωk �
−2J cos k with k ∈ �−π; π�. Furthermore, when doing actual
calculations, we measure all energies in terms of the coupling
constant (J � 1). Therefore, the distances reported in this
Letter are in units of a; energies are measured with respect
to ω0 in units of J, and time is in terms of 1∕J.

Our aim is to numerically calculate the time evolution of
an arbitrary wave function jψi. H preserves the number of ex-
citations in the system. The excitations are shared among the
qubits and photons. By creating all possible combinations that
lead to a fixed given excitation, we create different sectors with
different states for the qubits. For instance, in the case of three
excitations and two qubits, the four sectors in the system
are (1) three photons with both qubits in their ground states,
(2) two photons with the left qubit excited, (3) two photons
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with the right qubit excited, and (4) one photon with both
qubits excited. Once the basis sets for each sector is known,
one can generate the representation of H in terms of a
sparse matrix. Time evolution is obtained via the operation
exp�−iHt�jψi.

In [17–19], the Kronecker product basis states that require
Lm elements for m photons in a lattice of length L are used.
We use occupation basis states that require �L�m−1

L−1 � elements
[21]. We use the technique in [22] to easily transition between
different basis elements when forming H . There are a number
of ways to numerically calculate the matrix exponent [23];
we used the Expokit implementation [24] which comes with
ready-to-use Matlab code.

In Fig. 1(a), we show the results of scattering of a multi-
photon Gaussian pulse from a single-qubit, replicating a study
made in [18] for a lattice size of L � 99, Ω � ffiffiffi

2
p

, g � J � 1,
pulse center wave vector k0 � 3π

4 , and spatial pulse width of 5.
Our results and those in [18] agree well with each other.
Whereas [18] used the density matrix renormalization group
technique for 3 and 4 photons, with the new basis set, we
can simulate those cases in our Krylov-subspace-based code
[25] which we wrote using elements from the literate program-
ming approach [26].

Now that we verified our numerical approach for a single
qubit; let us look at the case of two qubits. We will use a
resolvent-based method detailed in [14] to analyze the scattering
of a photon from two qubits. The resolvent is defined as
G�z� � �z −H �−1. The Hamiltonian is written in the k basis as
H � H 0 � V , where H 0 � Ω1

2
σz1 � Ω2

2
σz2 �

R
π
−π dkωka

†
kak;

V � g1
R
π
−π dkσ

�
1 e−ikR∕2ak � g2

R
π
−π dkσ

�
2 e�ikR∕2ak � h:c:

Here “h.c.” stands for the Hermitian conjugate; the first qubit is
positioned at x1 � − R

2 , and the second qubit is at x2 � � R
2 ;

ωk � −2J cos k, and 2πg2s � g2s . We will have three sectors
where the single excitation in the system is in a photonic state
with wave vector k, in the first qubit, or in the second qubit.
These three states will be shown by jk↓↓i; j↑↓i; j↓↑i, respec-
tively. Our aim is to calculate the scattering matrix element
hp↓↓jSjk↓↓i and compare it with numerical results from
Krylov-subspace-based calculations. To do so, we first write
down the relationship between the S- and T -matrix elements as
hp↓↓jSjk↓↓i�hp↓↓jk↓↓i−2πiδ�ωp − ωk� limη→0�hp↓↓jT �ωp−
Ω1�Ω2

2 � iη�jk↓↓i. The T -matrix elements are related to the
matrix elements of the resolvent through the relationship

G�z� � G0�z� � G0�z�T �z�G0�z�, where G0 � �z −H 0�−1.
Thus, we are tasked with finding the matrix elements of G�z�.
We use the Lippmann–Schwinger equation for the resolvent,
G � G0 � G0VG � G0 � GVG0, in conjunction with the
identity operator for two qubits in the single excitation sector �
j↑↓ih↑↓j � j↓↑ih↓↑j � R

π
−π dkjk↓↓ihk↓↓j, to derive all nine

matrix elements, hp↓↓jGjk↓↓i, hp↓↓jGj↑↓i, hp↓↓jGj↓↑i,
h↑↓jGjk↓↓i, h↑↓jGj↑↓i, h↑↓jGj↓↑i, h↓↑jGjk↓↓i, h↓↑jGj↑↓i,
and h↓↑jGj↓↑i, in a manner similar to the case of a single qubit
[14]. We write down an explicit formula for h↑↓jG�z�j↑↓i as

h↑↓jG�z�j↑↓i � z 0 − Ω2 − g22I�z 0; 0�
D

; (1)

where

D � �z 0 − Ω1 − g21I�z 0; 0���z 0 − Ω2 − g22I�z 0; 0��
− g21g

2
2I�z 0;R�I�z 0; −R�; (2)

with z 0 � z� 1
2 �Ω1 �Ω2�. Here, the function I�z; x� is defined

as I�z; x� � R
π
−π dk

eikx
z−ωk�i0� � �−2πi�eik⋆ jxjffiffiffiffiffiffiffiffiffiffiffi

4 J2−z2
p � �−2πi�eik⋆ jxj

2Jj sin k⋆j via the use

of the residue theorem for z ∈ �−2J; 2J� where k⋆ � arccos −z2J .
Through the use of the definition of I�z; x� and the definition
of the S-matrix, we can derive two-qubit transmission and re-
flection coefficients in terms of the ones for a single qubit where

hp↓↓jSjk↓↓i� tkδ�p−k�� rkδ�p�k�

tk�
t�1�k t�2�k

1− r�1�k r�2�k e2ikR
rk�

2r�1�k r�2�k eikR� r�1�k e−ikR� r�2�k eikR

1− r�1�k r�2�k e2ikR

r�s�k � −g2s
g2s � i�2J cos k�Ωs�2Jjsin kj

t�s�k �1� r�s�k ; (3)

with the qubit index s ∈ f1; 2g and the single-qubit reflection
and transmission coefficients r�s�k , t�s�k , respectively. These sets of
results can also be obtained through transfer matrix techniques
[3,4], keeping in mind that the coordinate origin x � 0 located
at the midpoint of the two qubits is the input and output port
plane of the two-port system. In Fig. 1(b), we show the reflection
probability of a single-photon Gaussian pulse of spatial width 20,
from two qubits withΩ1 � 0.4,Ω2 � 0.8, g1 � 0.4, and g2 �
0.2 separated by five spatial units. We obtain the reflection co-
efficient numerically from the Krylov-subspace-based code, as
well as analytically via the integration of the Gaussian pulse with
rk. The two results agree well with each other, providing further
evidence that the code works as expected. The Gaussian pulse
width in k space leads to a smoothing of the jrkj2 envelope.

The Pauli-Z gate proposal that we will investigate requires
us to look for bound states with energies that fall into the
continuum �−2J; 2J� band for propagating photons. We will
refer to such states as bound states in the continuum (BICs).
The BICs require the presence of at least two qubits. They have
been investigated in [27–29] and are different than the atom-
photon bound states mentioned so far. The photonic part of
the BIC is trapped between the atomic “mirrors,” cannot leak
out of the atomic cavity, and forms a standing-wave pattern. To
find the energies at which BIC occur, we find the location of
the poles of the resolvent matrix elements from Eq. (2) for two
identical qubits with Ω1 � Ω2 � Ω and g1 � g2 � g .
The poles are at Ω � z 0 � ωk⋆ with 1� eik⋆R � 0 which

Fig. 1. (a) Excitation probability of the qubit interacting with a
Gaussian pulse consisting of one through four photons; the photon
number is shown with labels on the curves. (b) (Black line) Reflection
probability of a Gaussian single-photon wave packet f k0�k� with center
wave vector k0, from two qubits separated by R � 5 obtained via a
Krylov-subspace code, (white circles) reflection probability obtained
via

R
dkjrkf k0�k�j2, and (pink thin line) plot of jrkj2 from Eq. (3).
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correspond to the even ��� and odd �−� solutions, respectively.
For even solutions, we have k⋆ � �2ne − 1� π

R whereas, in the
odd case, k⋆ � 2no πR with ne , no integers. We calculate the
residues of the matrix elements of G�z� at the pole locations
to obtain the coefficients of the elements of the BIC.
Transformation from k-space representation to real space via
hxjki � 1ffiffiffiffi

2π
p eikx results in the normalized bound state as

jΨ�
ne;oi�N

"
j↑↓i�j↓↑i�

X
x
�−i�g e

ik⋆jx�R
2j� eik⋆jx−R2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 −Ω2

p jx↓↓i
#

N � 1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2R

4J2−Ω2

q ; (4)

where N is an overall normalization constant obtained from
Eq. (1) via Res�h↑↓jG�z 0�j↑↓i;ωk⋆� � N 2. The coefficients
of the j↓↑i and jx↓↓i parts of the BIC are obtained by con-
sidering Res�h↑↓jG�z 0�j↓↑i;ωk⋆� and Res�hk↓↓jG�z 0�j↑↓i;
ωk⋆�. The photonic part hx↓↓jΨi is zero for jxj > R∕2 due
to the fact that 1� eik⋆R � 0. Equation (4) agrees with [29]
and extends the results obtained for a waveguide with a linear
dispersion, as reported in [28] to the dispersive case.

We used our code to evaluate the time evolution of the BICs
and verified that they are indeed eigenstates of H by observing
that the state of the system remains unchanged as a function
of time. We then evaluated the time evolution of an initially
doubly excited, j↑↑i, two-qubit system where the separation of
the qubits is R � 5, k⋆ � π

R , g � 0.5, and Ω1 � Ω2 � ωk⋆
which are parameters suitable for the formation of an even
BIC. The results of the simulation are shown in Fig. 2. We
see that the probability of observing j↑↑i decays down to zero
whereas the probability of having the first qubit excited shows
an oscillatory pattern with a corresponding bouncing photon
state between the two qubits. These results show the formation
of a superposition of multiple bound states which leads to the
oscillatory pattern, similar to the oscillations observed in the
case of an initially excited single qubit [14]. Excitation of
the BIC in the case of a waveguide with a linear dispersion re-
lationship was also predicted in [7].

We now investigate a quantum gate proposal made in [30]
for four qubits in a waveguide making use of the decoherence
free subspace composed of qubit states that are antisymmetric
with respect to the exchange of any two qubits. As argued in
[29], the decoherence free subspace can be obtained in a one-
dimensional waveguide setting through the use of the BIC. We
follow the construction in [30] and form logical qubits consist-
ing of two neighboring physical qubits, as illustrated in Fig. 3
(b). The logical qubit states are defined as j0i ≡ j↓↓i and
j1i ≡ jΨ−

noi. At t � 0, we initialize the system at the superpo-
sition state �j10i � j01i�∕ ffiffiffi

2
p

. If we only consider the qubit
parts of the total wave function, the initial state is given by
Nffiffi
2

p �j↑↓↓↓i − j↓↑↓↓i � j↓↓↑↓i − j↓↓↓↑i�. We aim to incur a
phase difference between the j01i and j10i states so as to test
the Pauli-Z gate proposal. To do so, we apply a control
HamiltonianHC �t� where ΔH 12 � Δ

2 �σz1 � σz2� is turned on
for a finite duration [30], as shown by the hatched lines in
Fig. 3(a), which effectively changes the level spacing of the
first two qubits from Ω to Ω� Δ while HC is on. We can
approximate the time evolution of the qubit states by consid-
ering the effects of H 0 and HC �t�, but neglecting V . Note that
�H 0 � ΔH 12�j↑↓↓↓i � −Ωj↑↓↓↓i and, similarly, for j↓↑↓↓i.

However, �H 0 � ΔH 12�j↓↓↑↓i � −�Ω� Δ�j↓↓↑↓i. We see
that ΔH 12 results in an extra Δ term when the left logical
qubit is in j0i state, but no such term exists when the left logical
qubit is at j1i state. When we apply HC �t� for a duration T
and consider the evolution of the initial state approximately
via exp�iH 0T � exp�−i�H 0 �HC �T �, we arrive at the final state
Nffiffi
2

p �j↑↓↓↓i − j↓↑↓↓i � eiΔT �j↓↓↑↓i − j↓↓↓↑i�� in the interac-
tion picture with respect to H 0. For ΔT � π, the final state
becomes �j10i − j01i�∕ ffiffiffi

2
p

, and we have effectively a Pauli-
(-Z) gate for the left logical qubit.

In the presence of the full Hamiltonian where qubit-photon
coupling is turned on via V , the picture gets more complicated.
We record the state of the system as a function of time in the
interaction picture with respect to H 0 as

a10�t�j10i�a01�t�j01iffiffi
2

p with
j1i ≡ 1ffiffi

2
p �j↑↓i − j↓↑i� denoting an ideal logic state. We also

Fig. 2. Time evolution of a two-qubit system initialized at j↑↑i at
t � 0 with x1 � 150, x2 � 155. (a) Plot of the expectation value
of the number of photons as a function of space and time. (b) Plot
of the probability of observing the state at j↑↑i (solid black) and the
probability of having the first qubit in its excited state (dashed red) as a
function of time.

Fig. 3. (a) Fidelity as a function of t in set 1 (black) for R � 4,
g � 0.1, no � 1, set 2 (red) for R � 4, g � 0.5, no � 1, set 3 (blue)
for R � 7, g � 0.5, no � 1, and set 4 (green) for R � 7, g � 0.5,
no � 3. (b) Sketch of the system;HC �t� is applied to the left logical qubit.
(c) Evolution of a01�t� (square symbols) and a10�t� (light lines) as a func-
tion of t on the complex plane for the same set of parameters in (a).
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calculate the fidelity of the gate defined as F ≡ jhψ I jψ�t�ij
where the ideal final state is jψ I i � 1ffiffi

2
p �j10i − j01i�. In

Fig. 3(a), we plot F as a function of time when HC �t� is turned
on between t � 10 and t � 70 for different R, g , and no values.
When the separation R is small and g is low, we are in the
Markovian regime, and F is close to 1. Increases in R, g move
the system into the non-Markovian regime [28] and lower the
fidelity. We can understand the reasons behind the changes in F
by considering the motion of a10 and a01 on the complex plane
as time progresses. In Fig. 3(c) at t � 0, a10 � a01 �

ffiffiffi
2

p
N

which corresponds to points on the positive real axis. As time
increases, a01 moves counterclockwise in a circular fashion to-
ward the negative real axis. a10 remains pinned near the positive
real axis for low g, as highlighted by the dashed circle in Fig. 3(c).
However, increases in g , R, or no lead to an increased motion for
a10, lowering F . Furthermore, as is evident from Eq. (4), such
changes lead to a decrease in N which reduces F as well.
Oscillations in F are due to bouncing trapped photon states
between the qubits. Although the Pauli-Z gate proposal in
[30] was designed assuming a Markovian model, it is interesting
to note that the proposal still works, though with a lower
fidelity, in the non-Markovian regime.

Before we conclude, let us briefly comment on the physical
applicability of the parameters used in this Letter. From the
data in Fig. 3 of [20], we see that the value of κ � 2J∕ω0

can be varied between 4.7 × 10−5 and 1.8 × 10−3 by changing
the distance between cavities. From Table 1 of [31], we see that
g � 2π × 27 GHz (113 μeV) is achieved for a quantum dot in
a nanobeam cavity resonant at 945 nm [32], i.e., ω0 � 2π ×
317 THz. Hence, for a coupled array of nanobeam cavities,
it seems possible to get the range 1

2π J � �7.45; 285� GHz
and g � ffiffiffiffiffi

2π
p

g ≈ �0.2; 9�J with the cavity-qubit detuning
of 1 nm leading to jΩ − ω0j ≈ 2π × 335 GHz positioning Ω
within or outside the tight-binding band of �ω0−2J;ω0�2J�.
Typical circuit QED parameters are available in Table I of [33].

In conclusion, we extended the Krylov-subspace-based
numerical time evolution method to the multi-photon, multi-
qubit case. We verified the numerical method with previously
published results and analytical studies. We analyzed the BIC
and have shown how they can be excited from a doubly excited
two-qubit system. We made use of the BIC in implementing a
Pauli-(-Z) gate following the proposal in [30]. We studied the
properties of the gate as a function of system parameters. Our
numerical method is currently using hard-wall boundary con-
ditions requiring us to make sure that there are no reflections
from the two ends of the simulation domain. The development
of absorbing boundaries compatible with arbitrarily entangled
many-body states would help reduce computational requirements
of the simulations. Although we have not included dissipation in
our formalism, introduction of a secondary waveguide to act as a
reservoir is possible [34]. Our quantum gate is assumed to
abruptly change the Hamiltonian of the system; however, better
pulse shapes are conceivable [35]. Our approach can be extended
to simulate gates with multiple quenches, as in [36], to approxi-
mate arbitrarily shaped pulses. Recently, coupling between qubits
and periodic waveguides was studied in [37], and it would be of
interest to investigate the applicability of the methods presented
in this Letter to such geometries. The code provided with this
Letter [25] can be of use in simulating quantum many-body pro-
posals utilizing bound states [38] for studying topological order in

one-dimensional waveguiding systems [39] or for building mod-
ules of a quantum computation architecture [40].
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