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Abstract—We investigate the transmission properties of a 

subwavelength plasmonic slot waveguide. We show that the 
transmission can be accurately calculated using the characteristic 
impedance of the propagating mode. Using such a model, we 
show that it is possible to design devices without extensive 3D 
Finite Difference Time Domain (FDTD) computer simulations. 
We illustrate the approach with calculations of an asymmetric 
Fabry-Perot germanium photodetector based on the slot 
waveguide geometry, showing predicted detector efficiencies as 
high as 69% despite metallic losses. 

Index Terms—Plasmons, Photodetectors, Optical Planar 
Waveguide Components 

I. INTRODUCTION 
NTEGRATED photonic components that allow propagation of 
an optical mode at subwavelength size scales are expected 

to play an important role in bridging the gap between optics 
and electronics in highly integrated opto-electronic circuits. 
The properties of propagating modes have recently been 
investigated for several plasmonic structures, such as the 
metal nanowire [1-3], metal nanoparticle arrays [4-6] and 
metal slot waveguides [7-10]. In particular, metal slot 
plasmonic waveguides were shown to support guided modes 
with high confinement at infrared wavelengths [7-10]. Such 
structures seem promising for guiding into subwavelength 
nanoscale photodetectors, as they support a high integration 
density and propagation lengths in the range of a few microns. 

In design of optoelectronic circuits based on this geometry, 
it is desirable to calculate the transmission and reflection 
properties when waveguides with different parameters are 
connected together. The coupling between waveguides of 
different geometries has recently been studied for two-
dimensional plasmonic waveguides of various geometries [11-
14] and three-dimensional metal strips [15-16]. However, the 
design of complex three-dimensional structures typically 
requires extensive computational efforts with computer-aided 
tools such as the Finite-Difference Time-Domain (FDTD) 
method. 
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Fig. 1 Metal slot plasmonic waveguide cross section where 

light propagates in the z-direction. 
 

 In this paper, we investigate the transmission and reflection 
properties of the guided modes in metal slot plasmonic 
waveguides in propagation through a series of waveguide 
sections with different core materials. Fig. 1 shows a cross 
section of a metal slot plasmonic waveguide structure, where 
the region indicated by εm is metal, ε1 and εc are both 
dielectrics. This waveguide supports a bound mode where 
light propagates in the z-direction (normal to the plane of the 
figure). We show that a model that uses the characteristic 
impedances of different sections together can be used to 
calculate the transmission and reflection properties of such 
waveguides, even though the metal properties are quite 
different from those of similar guides in the microwave 
regime and significant loss must be included in the analysis. 
We then show that this model allows the design of complex 
waveguide structures with desired properties at a minimal 
computational effort by applying this technique in design of a 
photodetector based on an asymmetric Fabry-Perot resonator 
embedded in the waveguide. 

II. CHARACTERISTIC IMPEDANCE MODEL 
We use a transfer matrix approach that relies on the 

impedance of the mode to describe the behavior of the fields 
as they propagate through a series of different waveguides. 
We note that this model is analogous to the mode matching 
approach in microwaves where multiple modes might be 
considered [17-18]. However, in the case of the slot 
waveguide, there exists a range of parameters where the 
waveguide supports only one bound propagating mode. For 
such structures, it is possible to use a transfer matrix to relate 
the coefficients of the forward and backward versions of the 
propagating mode in a linear fashion, along with the 
transmission and reflection coefficients at each of the 
discontinuities along the propagation direction. 
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Considering only the fundamental mode of each waveguide, 
we build a network model for the propagation of the fields 
throughout the whole structure. Applying the boundary 
conditions of continuity of the tangential electric and magnetic 
fields reduces to 
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where Ai and Bi are the amplitudes of the forward and 
backward propagating modes, respectively. Elements with 
subindex i are located before the junction (i.e., to the left of 
the junction for waves incident from the left), while those with 
subindex (i+1) are located after the junction. Zi is the 
characteristic impedance of the waveguide. Ci,i+1 is the 
coupling coefficient that can be calculated by the mode 
overlap at the junction of the waveguides as 
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where and  is the normalized tangential electrical field in 

the i-th cross-section, respectively,  is the propagation 
direction, S is the entire cross section of the junction, and it is 
assumed for our model that  
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For the structures under investigation, we find from 
simulations that this approximation is valid to about 5%. 
 
The fields are normalized such that 

 1ˆ =⋅×∫
S
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(4) 

 
At the junction between two waveguide cross sections, we 

obtain a transfer matrix Ti,i+1 that relates the forward and 
backward propagating modes as 
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The impedance of the mode is related to the effective 
permittivity εeff and the propagation constant γ by 
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In lossy waveguides, the propagation constant γ=α+jβ is 
complex, and so the characteristic impedance of the 
waveguide is also complex. 
 The propagation through a waveguide of length L can be 
modeled (for the specific approach we take below of 
calculating from the “right” to “left” in the structure) as  

 
⎥
⎦

⎤
⎢
⎣

⎡
−

=
)exp(0

0)exp(

i

i
i L

L
P

γ
γ .  

(8) 

 
Several sections of waveguides can be modeled by a 

transfer matrix analogous to that of a standard transmission 
line by alternating junction matrices and propagation matrices 
as 
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(9) 

 
Thus, by knowing the propagation constants of a given 

waveguide section, the transmission properties of an arbitrary 
waveguide can be calculated. 

III. NUMERICAL MODELS 
We used a two-dimensional full vectorial mode-solving 

approach as proposed by Lusse et al. [19] to solve for the 
properties of the actual propagating modes in each waveguide 
where the properties of materials are different, hence 
obtaining the necessary parameters to use in transfer matrix 
methods. With appropriate initial conditions, these 
calculations can be executed in a few minutes on a personal 
computer. 

We also used Finite-Difference Time Domain (FDTD) 
simulations to verify the values of the propagation constants 
obtained by the mode solving approach [20]. The FDTD uses 
magnetic and electric walls at symmetry planes to reduce the 
computation effort. Convolution perfectly matched layers (C-
PML) surround the structure in all directions. For these 
simulations, the guide is excited by a magnetic dipole located 
in the core region of the waveguide with a sinusoidal signal 
wrapped in a Gaussian envelope. 

Our study focuses on gold as the metal. We model the gold 
as a Drude metal and its permittivity is given as 
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where ωp=1.204x1016 rad/s and γp=1.375x1014 rad/s [21]. 
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The propagation constants from the FDTD were calculated 
by observing the phase variation and the decay of the mode 
along the propagation direction. While no attempt was made 
to mitigate numerical dispersion in the grid, we found a 
difference in propagation constant of less than 2% between 
the FDTD and the mode solving approach. To minimize 
numerical artifacts in comparing our transfer matrix results to 
the full FDTD simulations of the structure, we used the 
propagation constants from the FDTD simulations in 
calculations involving the impedance model, though we 
believe, given the agreement between the two approaches, that 
the faster mode-solving approach is otherwise generally 
sufficient. 

The effective refractive index neff is related to the imaginary 
part of the propagation constant γ as neff=βc/ω. The 
propagation length Lp is defined as the length for which the 
field intensity attenuates by a factor of (1/e) and is related to 
the real part of the propagation constant γ as Lp=1/2α. The 
surrounding material was silicon dioxide for all simulations, 
with a refractive index of 1.44. The dimensions of the 
waveguide core (a x b) were 80nm x 80nm (see inset in Fig. 
2). The core of the waveguide was filled with silicon dioxide, 
silicon or germanium. Silicon was taken to have a refractive 
index of 3.52. Germanium was modeled with a complex 
refractive index of 4.23 + 7.8 x 10-2j, which corresponds to a 
power loss absorption coefficient of αG=7540 cm-1 [22]. (For 
simplicity of simulation, the germanium loss was taken 
independently of frequency, though the loss does drop off 
relatively abruptly for wavelengths longer than ~1.5μm, and 
there is a slow rise for wavelengths progressively shorter than 
~1.5μm. This particular loss number is characteristic of 
germanium at a wavelength of 1.3μm.) 
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Fig. 2: Effective refractive index for different filling 
materials in the core. The inset represents the cross section 
of the slot waveguide structure. The core region has 
permittivity εc. (The germanium loss is taken as that at 
1.3μm.) 
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Fig. 3: Propagation length for waveguides with different 
filling materials in the core. (The germanium loss is taken 
as that at 1.3μm.) 

 
The propagation constants found with the mode solving 

approach for the slot waveguides with different materials 
filling the core are shown in Fig. 2 and Fig. 3. For these 
dimensions, there exist only one propagating bound mode 
above cut-off. This mode is quasi-TEM with dominant Hy and 
Ex fields, i.e. the electric field is primarily polarized 
“horizontally” from one strip to the other and the magnetic 
field is primarily vertical (see Fig. 1 for coordinate directions).  

IV. REFLECTION FROM A FABRY-PEROT STRUCTURE 
As a specific structure of interest also for potential 

applications, e.g. in photodetectors, we consider first a single-
slab Fabry-Perot structure embedded in a plasmonic slot 
waveguide. The structure is shown in Fig. 4. It consists of a 
slot waveguide where the core region has a different 
permittivity εc for a given length L. The dimensions of the 
waveguide are (a x b) = 80nm x 80nm. The metal used is 
gold, and extends to infinity in the positive and negative x-
directions. The ambient material is silicon dioxide, with a 
refractive index of 1.44. The waveguide core region is filled 
with silicon of length varying between 100nm and 800nm. 
The refractive index of silicon was taken as 3.52, and the 
silicon is presumed lossless in this simulation. We examined 
the calculated power reflected from the structure as we varied 
the cavity length L.  

 
 

 
Fig. 4: Fabry-Perot structure. a) Perspective view of the 
structure. b) Top view of the structure 
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The power reflected at the front surface of the silicon in a 
full FDTD simulation of this structure was deduced from the 
standing wave electrical field amplitudes. We use the absolute 
value of the electric field at position z=zmax where it has a 
maximum amplitude and at position z=zmin, where it has 
minimum amplitude (assuming propagation in the forward z-
direction, and z=0 as the front surface of the silicon).  We find 
the reflected power using the ratio of the maximum electric 
field |E|max at position zmax and the minimum electric field 
|E|min at position zmin. Defining this ratio as 
 

min

max

E
E

R = , 
(11) 

the reflected power is given as 
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where Lp is the propagation length for a silicon dioxide core 
waveguide. 

We calculated the reflected power expected from the 
impedance model as 
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 We compare the results of the FDTD simulations to those 
from the characteristic impedance model. Fig. 5 presents the 
reflection as a function of length for a wavelength of 1.3μm. 
In Fig. 6, we show the reflected spectrum as a function of 
wavelength in a cavity length L of 650nm. We note that the 
reflection as calculated from the characteristic impedance 
model well describes the behavior of the device. The 
reflection measured in FDTD simulation was a few decibels 
lower than what was calculated by the impedance model. This 
discrepancy can be explained by presuming that power is also 
coupled into radiation modes and higher order modes below 
cut-off that are excited at the discontinuities and that were not 
taken into consideration in our single-mode transfer matrix 
impedance model. 
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Fig. 5: Reflected power from a Fabry-Perot structure at 
λ=1.3μm as a function of the length of the silicon core 
section. 
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Fig. 6: Reflection spectrum of a Fabry-Perot resonator for 
a length of 650nm. 

 
We calculated the reflection from a structure with two 

separate pieces of silicon within the guide as a function of 
their separation distance Lgap. In this case, the pieces of silicon 
are effectively operating as mirrors, forming a Fabry-Perot 
resonator between them, a resonator that should tune as this 
separation distance is varied. The two pieces of silicon have 
the same cross sectional dimensions (80nm x 80nm) and are 
each 100nm long. The reflection at 1.3μm as a function of the 
separation length between the two cavities is shown in Fig. 7. 
The model well describes the reflection of the structure to a 
few decibels, and again we expect that the difference between 
the model and the FDTD simulations may be the result of 
radiation modes that are neglected in the model. 

This transfer matrix model based on the calculated complex 
mode impedance of the plasmonic metal slot guides thus 
offers a useful approach at a greatly reduced computing cost 
compared to full FDTD simulations of the structure. 
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Fig. 7: Reflection spectrum of two coupled Fabry-Perot 
resonators at λ=1.3μm as a function of their separation 
distance Lgap. 
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V. DESIGN OF STRUCTURES USING THE CHARACTERISTIC 
IMPEDANCE MODEL 

We can apply the impedance model to design a germanium-
based photodetector at 1.3μm. The design consists of an 
asymmetric Fabry-Perot resonator, using the first piece of 
germanium as the front reflector and the primary absorbing 
region, followed by a back reflector that is designed by 
alternating different elements of germanium with silicon 
dioxide spacers, nominally in the form of a Bragg reflector 
structure (see Fig. 8).  
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Fig. 8: Asymetric Fabry-Perot structure. a) Perspective 
view. b) Top view. 

 
 
The structure had the same cross section as the one depicted 

in Fig. 2, with dimensions a x b of 80nm x 80nm. We used 
SiO2 as the surrounding material, with refractive index of 
1.44. At 1.3μm, the germanium has a complex refractive index 
of 4.23 + 7.8x10-2j, which corresponds to a power loss 
absorption coefficient in bulk germanium of αG=7540 cm-1 as 
before. 

The back reflector was designed by considering unit cells of 
the Bragg reflector structure. The unit cell consists of a cross 
section with silicon dioxide in the core for a propagation 
length of LA, followed by a similar structure but filled in the 
core with germanium for a propagation length of LB. The unit 
cell was designed such that no field would propagate through 
the entire structure if the unit cell were repeated a large 
number of times. For the given refractive indices of silicon 
dioxide and germanium, a length of 190nm for both LA and LB 
would create a Bragg back reflector at 1.3μm. 

Using the characteristic impedance model, we then 
calculated the length of the photodetector L that would 
maximize the absorbed power in this cross section. For a 
length of 260nm, the impedance model shows that the amount 
of reflected power is less than 1% when two unit cells are 
used as the Bragg back reflector (as in Fig. 8). The amount of 
power reflected from the asymmetric Fabry-Perot as a 
function of the wavelength is shown in Fig. 9. We note that 

the model correctly predicts the shape of the reflection 
spectrum and its minimal value at 1.3μm. FDTD simulations 
also showed a reflected power of less than 1% at that 
wavelength. 
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Fig. 9: Reflection at the front surface of an asymmetric 
Fabry-Perot structure for a photodetector length L of 
260nm. 

 
The amount of power absorbed in this device by different 

portions of the structure is shown in Fig. 10 as calculated by 
the FDTD. There are two loss mechanisms in this structure: 
the loss due to attenuation of the propagating fields in the 
metal and the absorption in the germanium semiconductor that 
contributes to photocurrent. The fraction of power absorbed 
into a given volume can be calculated from the power flowing 
into this closed surface less the power flowing out of it. 

At 1.3μm, 30.9% of the power was absorbed in the metal 
past the front surface. The germanium elements, which 
represent a volume of 4.1x10-3 μm3 absorbed 69.0% of the 
total power. The first section of germanium, which consists of 
a cube of 80nm x 80nm x 260nm absorbed 54.1% of the 
incoming power. Also, the absorption peak occurs at 1.3μm, 
where the photodetector was designed to operate. Assuming 
full quantum efficiency, this detector would have a 
responsivity of 0.72 A/W at 1.3 μm. 

Such a device could be fabricated from germanium on 
insulator wafers by first patterning the germanium and 
subsequently depositing metal with a lift-off process. The two 
metals stripes on each sides of the germanium could be used 
to bias the photodetector and create a metal-semiconductor-
metal junction. Light could be coupled at the end of the device 
by a dielectric waveguide or an optical fiber, or by a 
nanometallic scatterer located close to the waveguide, though 
such coupling mechanisms remain subject for further 
investigation.  
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Fig. 10: Absorbed power in the asymmetric Fabry-Perot 
photodetector. (The germanium loss is taken as that at 
1.3μm.) 
 

VI. CONCLUSION 
We presented a simple model to account for the 

transmission properties of a plasmonic metal slot waveguide 
with discontinuities in the propagation direction. We showed 
that this model accurately modeled the properties of 
interconnected slot waveguides with different materials filling 
the core region. This model can be readily applied to design 
structures without extensive time-domain simulations. As an 
example, we designed an asymmetric Fabry-Perot waveguide 
photodetector with minimal front surface reflection. The 
designed photodetector absorbed 69% of the incident power in 
a volume 4.1x10-3 μm3. We also therefore conclude that useful 
nanoscale photodetectors will be possible by such techniques 
and we expect such devices would have a large electrical 
operating bandwidth due to their physical size and a 
corresponding small capacitance. 
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