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I. INTRODUCTION

In the context of quantum information technology, includ-
ing quantum computing devices, understanding the interaction
between a few-photon state and a two-level atom plays an
important role [1–3]. The photons are a possible candidate
for the “flying qubit” that carries the information, and the
two-level atom constitutes the “stationary qubit,” where the
flying qubits are generated on demand and correlated with
each other.

Recently, there has been an increased activity in analyz-
ing the properties of photons propagating in a waveguide
coupled to a qubit—a two-level quantum mechanical system.
Experimental demonstration of the control of single photons
was made in a waveguide coupled to an optical cavity with
an atom in its near field [4]. Similar effects were observed
in the microwave domain, when low-frequency photons in a
transmission line were coupled to a superconducting qubit
[5,6], which later was shown to act as a photon amplifier [7].

To theoretically model such systems one needs to consider
a continuous set of waveguide modes that are free to propagate
in one dimension, either directly coupled to a multilevel system
(referred to as an “atom” in the present article), or indirectly
coupled through an optical cavity with a discrete set of modes.
Photon transport properties are nontrivial in these structures
[8–11], which can be tailored to perform logic operations [12]
or form a diode [13]. Exact solutions of one- and two-photon
scattering have been reported in [9,11].

The most widely used theoretical approach is to treat the
set of equations in the Schrödinger picture and apply the
Lippmann-Schwinger formalism to calculate the reflection
and transmission properties of the single and multiphoton
states [10,14–17]. An alternative technique is to use the
reduction formulas from field theory to calculate the scattering
matrix of the system [18,19]. Time-domain simulations that
take the waveguide dispersion into account are also possible,
and an interesting radiation trapping mechanism was recently
predicted [20].

In this article, we extend the input-output formalism [21,22]
of quantum optics—a Heisenberg picture approach originally
introduced to analyze the interaction between an atom in a
cavity and a continuous set of electromagnetic states outside
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of the atom-cavity system—to analyze the transport of few-
photon states in a waveguide with an embedded qubit. In the
input-output formalism one obtains a nonlinear set of operator
equations based on the Hamiltonian of the system. For a
coherent- or a squeezed-state input, this formalism has been
extensively used to calculate various coherence properties of
the output state of light. Here, we show that one can adopt this
formalism to obtain exact results regarding one- or two-photon
properties. To do so, we establish a relationship between the
input-output formalism and the scattering matrix elements of
the system. Our approach complements the existing theoretical
literature and bridges different analytical techniques.

This article is organized as follows: In Sec. II we introduce
the Hamiltonian of the system. In Sec. III we build the link
between the scattering theory and the input-output formalism
and continue in Sec. IV with the derivation of the one-photon
transport properties. In Sec. V we show how to extend the
calculations to the two-photon case. In Sec. VI we make
observations on correlation function calculations based on
coherent-state inputs and end with our conclusions in Sec. VII.

II. HAMILTONIAN

We start by discussing the model Hamiltonian that we will
use in this article. As an illustration of the formalism, we
consider a two-level atom coupled to a single polarization,
single-mode waveguide [9] and treat the transport properties
of few-photon states in such a system (Fig. 1). The Hamiltonian
H̃ is defined as (h̄ = 1)

H̃ = H̃0 + H̃1.

Here, H̃0 describes a chiral (i.e., one-way) waveguide where
photons propagate in only one direction:

H̃0 =
∫ ∞

0
dβω̃(β)ã†

β ãβ,

where ãβ and ã
†
β are the annihilation and creation operators for

the photons with wave vector β, respectively. In Appendix A
we calculate the reflection and transmission probabilities for
photons in a waveguide where the fields propagate in both
directions and show that the results are straightforward exten-
sions of the chiral case. The operators obey the commutation
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FIG. 1. (Color online) Schematic representation of two photons
in a waveguide at frequencies k and p moving to the right toward a
two-level atom with energy levels |g〉 and |e〉, respectively. �̃ is the
separation between the energy levels. Coupling of the two-level atom
to the modes in the waveguide is proportional to τ−1. Long horizontal
lines denote the waveguide geometry.

relation [ãβ ,ã
†
β ′ ] = δ(β − β ′). H̃1 describes the atom as well

as the atom-waveguide interaction:

H̃1 = 1

2
�̃σz + V

∫ ∞

0
dβ(σ+ãβ + ã

†
βσ−).

Here, �̃ is the atomic transition frequency, σ± are the raising
and lowering operators, respectively, for the two-level atom,
and σz = 2σ+σ− − 1. V denotes the coupling strength between
the atomic states and the waveguide modes. The derivation
of the Hamiltonian is based on the dipole and rotating wave
approximations [23] and on taking the continuum limit for
field operators. The details of taking the continuum limit are
discussed in Appendix B.

It will be useful to have H̃ in terms of the frequency of the
photons instead of their wave vector; therefore, we linearize the
waveguide dispersion around (β0,ω0) as ω̃(β) = ω0 + vg(β −
β0) (see Fig. 2). Notice that the total excitation operator

NE =
∫ ∞

0
dβã

†
β ãβ + 1

2
σz

commutes with H̃ (i.e [H̃ ,NE] = 0). We could thus equiva-
lently solve a system described by

H = H̃ − ω0NE = H0 + H1, (1)

where

H0 =
∫ ∞

−∞
dβvg(β − β0)ã†

β ãβ,

H1 = 1

2
�σz + V

∫ ∞

−∞
dβ(σ+ãβ + ã

†
βσ−).

Here, � = �̃ − ω0, and we also extended the lower limit of
integration to −∞ so that we can define the Fourier transform
of operators in the next section. Since we will be dealing
with states with wave vectors around β0, the extension of the
integration limit is well justified [24,25]. Finally, we complete
our transition from wave vectors to frequencies by defining
ω ≡ vgβ and the operator aω ≡ ãβ+β0/

√
vg , which satisfies

the commutation relation [aω,a
†
ω′ ] = δ(ω − ω′). As a result of

all these changes, we have

H0 =
∫ ∞

−∞
dωωa†

ωaω, (2)

H1 = 1

2
�σz + V√

vg

∫ ∞

−∞
dω(σ+aω + a†

ωσ−). (3)

Throughout this article, the labels for photon degrees of
freedom, for example k and p, refer to photon frequency.

III. CONNECTION BETWEEN SCATTERING THEORY
AND INPUT-OUTPUT FORMALISM

In a typical scattering experiment, various input states
are prepared and sent toward a scattering region. After the
scattering takes place, the outgoing states of the experiment
are observed, and information about the interaction is deduced.
The mathematical formulation of such a process is commonly
made using the scattering matrix with elements of the form

Sp1p2,k1k2 = 〈p1p2 |S| k1k2〉,
where |k1k2〉 denotes the input states—here given as a two-
particle state with energies (frequencies) k1 and k2—and
|p1p2〉 denotes the outgoing states. These input and output
states are assumed to be free states in the interaction picture
and exist long before (t → −∞) and long after (t → ∞) the
interaction takes place. The S operator, then, is equal to the
evolution operator UI in the interaction picture from time −∞
to +∞:

S = lim
t0→−∞
t1→∞

UI (t1,t0)

= lim
t0→−∞
t1→∞

eiH0t1e−iH (t1−t0)e−iH0t0 ,

where H0 is the noninteracting part of the Hamiltonian, and
H = H0 + H1 is the total Hamiltonian.1 In order to have a
more compact notation, we will drop the limits and imply
t0 → −∞ and t1 → ∞.

An equivalent way to describe the scattering is in terms of
the scattering eigenstates |k1k

±
2 〉 that evolve in the interaction

picture from a free state either in the distant past or the distant
future:

|k1k
+
2 〉 ≡ UI (0,t0)|k1k2〉 = eiHt0e−iH0t0 |k1k2〉 ≡ �+|k1k2〉,

|k1k
−
2 〉 ≡ UI (0,t1)|k1k2〉 = eiHt1e−iH0t1 |k1k2〉 ≡ �−|k1k2〉.

The interaction picture time evolution operators that relate
scattering and free states are called the Møller wave operators
�±. The scattering operator can equivalently be written as
S = �

†
−�+.2 It is also possible to write the scattering matrix

elements as

〈p1p2 |S| k1k2〉 = 〈p1p
−
2 |k1k

+
2 〉.

We should note that scattering eigenstates and the free states
with the same quantum numbers have the same energies; that
is, H0|k1k2〉 = Ek1k2 |k1k2〉 and H |k1k

±
2 〉 = Ek1k2 |k1k

±
2 〉 [26].

1See [26] for more information about stationary scattering theory.
Reference [27] provides a historical account of the developments
related to the S matrix.

2There is also an alternative definition of the scattering operator S ′ =
�+�

†
−, which relates the incoming and outgoing scattering eigen-

states, |k+〉 = S ′|k−〉, such that 〈p|S|k〉 = 〈p−|k+〉 = 〈p−|S ′|k−〉 =
〈p+|S ′|k+〉. See [28,29] for details.
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It is possible to denote the scattering matrix elements by an
appropriate definition of input and output operators such that

〈p1p
−
2 |k1k

+
2 〉 = 〈0|aout(p1)aout(p2)a†

in(k1)a†
in(k2)|0〉, (4)

where

ain(k) ≡ �+ak�
†
+ = eiHt0e−iH0t0ake

iH0t0e−iH t0 , (5)

aout(k) ≡ �−ak�
†
− = eiHt1e−iH0t1ake

iH0t1e−iH t1 , (6)

have the property of creating input and output scattering
eigenstates:

a†
in(k)|0〉 = |k+〉,

a
†
out(p)|0〉 = |p−〉,

and the commutation relations

[ain(k),a†
in(p)] = [aout(k),a†

out(p)] = δ(k − p).

We now relate the scattering theory, as briefly sketched
above, to the input-output formalism [21,22] of quantum
optics. To do so, we start by recalling the definition of the
input field operator [21]:

ain(t) = 1√
2π

∫
dk ak(t0)e−ik(t−t0),

where ak(t0) ≡ eiHt0ake
−iH t0 is an operator in the Heisenberg

picture. The relationship between ain(t)—which is defined
in the input-output formalism—and ain(k)—which is defined
above in (5) as a result of the scattering theory—can be
determined by noting that

ain(t) = 1√
2π

∫
dkeiHt0ake

−iH t0e−ik(t−t0)

= 1√
2π

∫
dkeiHt0e−iH0t0ake

iH0t0e−iH t0e−ikt

= 1√
2π

∫
dkain(k)e−ikt , (7)

where in the second line we used the fact that [H0,ak] = −kak

to convert the ake
ikt0 term into e−iH0t0ake

iH0t0 . As a result, ain(k)
provides the spectral representation of ain(t) in the limit t0 →
−∞. Similarly, the output field operator in the input-output
formalism

aout(t) = 1√
2π

∫
dkak(t1)e−ik(t−t1),

is related to aout(k) in the scattering theory through

aout(t) = 1√
2π

∫
dkaout(k)e−ikt , (8)

in the limit t1 → ∞. We have thus established a direct con-
nection between the input-output formalism and the scattering
theory. We should note that a different set of input and
output operators were defined in [30] with an aim to make
a connection to correlation functions. In [31], a similar set
of input-output operators were defined in order to relate two
different quantization schemes in dielectric media. However,
the connection we point out here differs from the previous
literature.

β

ω̃(β)

β0

ω0

FIG. 2. (Color online) Linearization of a surface-plasmon-like
waveguide dispersion relation ω̃(β) around a wave vector β0. The
slope of the line is equal to the group velocity vg . The photon states
in the text are assumed to have frequencies in the vicinity of ω0 so
that the linearization is justified.

IV. SINGLE-PHOTON TRANSPORT

Now that we know the relationship between the input-
output formalism and the scattering theory, let us now calculate
the S-matrix elements 〈p|S|k〉 between two single-photon
states |k〉 and |p〉. Following the standard procedure (see
Appendix C), the input-output equations appropriate for the
Hamiltonian in (1) are

dN

dt
= −i

√
2

τ
(σ+ain − a†

inσ−) − 2

τ
N, (9)

dσ−
dt

= i

√
2

τ
σzain − 1

τ
σ− − i�σ−, (10)

aout = ain − i

√
2

τ
σ−, (11)

where all operators are in the Heisenberg picture and hence
they are all time dependent. The quantity τ−1 = πV 2/vg

is proportional to the spontaneous emission rate, and N =
σ+σ− = (σz + 1)/2 describes the probability of having the
atom in the excited state.

The single-photon transport properties are described by the
single-photon S matrix, which is related to the input and output
operator by

〈p|S|k〉 = 〈0|aout(p)a†
in(k)|0〉

= 1√
2π

∫
dt〈0|aout(t)|k+〉eipt ,

where we used (8) to write aout(p) in terms of aout(t). It is
therefore sufficient to first calculate 〈0|aout(t)|k+〉 and then
perform an inverse Fourier transformation to determine the
single-photon S matrix. In the calculations to follow in this and
the next section, we will go back and forth between Fourier
transforms of the operators, and we will explicitly use t and t ′
to imply time-dependent operators and k1,2 and p1,2 to denote
the time-independent Fourier-transformed pairs.

The quantity 〈0|aout(t)|k+〉 can be obtained by sandwiching
(10) and (12) between the two states 〈0| and |k+〉. We have

d

dt
〈0|σ−|k+〉 = i

√
2

τ
〈0|σzain|k+〉 − 1

τ
〈0|σ−|k+〉

− i�〈0|σ−|k+〉, (12)
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〈0|aout|k+〉 = 〈0|ain|k+〉 − i

√
2

τ
〈0|σ−|k+〉. (13)

Note that

〈0|ain(t)|k+〉 = 〈0|ain(t)a†
in(k)|0〉 = 1√

2π
e−ikt , (14)

by the use of (7), and

〈0|σzain(t)|k+〉 = −〈0|ain(t)|k+〉, (15)

since |0〉 has an atomic part that is in the ground state. Using
(14) and (15) in (12) and (13) results in a first-order ordinary
differential equation. By solving it, we get

〈0|σ−|k+〉 = 1√
2π

e−ikt

√
2/τ

(k − �) + i/τ
, (16)

〈0|aout|k+〉 = 1√
2π

e−ikt (k − �) − i/τ

(k − �) + i/τ
. (17)

After Fourier transforming (17), we obtain the single-photon
S matrix:

〈p |S| k〉 = tkδ(k − p), (18)

where

tk ≡ (k − �) − i/τ

(k − �) + i/τ

is the single-photon transmission coefficient. For subsequent
calculations, we also define

sk ≡
√

2/τ

(k − �) + i/τ
,

which measures the excitation of the atom by the single-photon
wave when normalized against the incident wave amplitude.
The quantities tk and sk are related by

tk = 1 − i

√
2

τ
sk.

These results for single-photon transport agree with [9,11],
where the scattering wave function was directly calculated
through a real-space formalism.

The crucial step in the derivation above is (15), which takes
advantage of the single-excitation nature of the input state. For-
mally, the same result can also be obtained by approximately
setting σz = −1 in (10), and thus linearizing the operator
equation. Such a procedure has been commonly adopted in
many quantum optics calculations [32–34]. Typically, such
an approximation is justified by assuming a so-called weak
excitation limit, where the atom is assumed to be mostly in the
ground state. Physically, in the case of single-photon transport,
the weak-excitation limit is valid when a single-photon pulse
has a duration that is much longer than the spontaneous lifetime
of the atom. However, we emphasize that the weak-excitation
limit is not always valid in general, even for a single-photon
pulse. It has been shown that, for the Hamiltonian in (1),
a single-photon pulse with a duration comparable to the
spontaneous emission lifetime can in fact completely invert
an atom [35].

The formalism here removes the need for the assumption
of the weak-excitation limit when calculating single-photon
properties. In fact, we can directly calculate the excitation
probability 〈k+|N |k+〉 for the scattering eigenstate |k+〉. With
N = σ+σ− and using (16) we have

〈k+|N |k+〉 = 〈k+|σ+σ−|k+〉 = 〈k+|σ+|0〉〈0|σ−|k+〉
= 1

2π
|sk|2 = 1

2π

2/τ

(k − �)2 + (1/τ )2
.

Here, we again have taken advantage of the fact that |k+〉 is a
single-excitation state, whereas σ+ acting on any state except
|0〉 would result in a multi-excitation state leading to a zero
overlap with 〈k+|. More generally, we have

〈k+|σz(t)|p+〉 = 〈k+|(2σ+σ− − 1)|p+〉
= 2〈k+|σ+|0〉〈0|σ−|p+〉 − δ(k − p)

= 1

π
e−i(p−k)t s∗

k sp − δ(k − p), (19)

which will be useful when deriving the two-photon S matrix.

V. TWO-PHOTON TRANSPORT

Our aim in this section is to calculate the two-photon
S matrix based on the results we obtained for the single-photon
case. We first introduced the two-photon S-matrix element
in (4). We will begin by inserting an identity operator in
between aout(p1) and aout(p2):

〈0|aout(p1)aout(p2)a†
in(k1)a†

in(k2)|0〉
= 〈0|aout(p1)

(∫
dk|k+〉〈k+|

)
aout(p2)a†

in(k1)a†
in(k2)|0〉,

and use the Fourier transform of (17) to simplify the expression
as

= tp1〈p+
1 |aout(p2)a†

in(k1)a†
in(k2)|0〉.

Using the Fourier transform of (11) we get

= tp1〈p+
1 |

[
ain(p2) − i

√
2

τ
σ−(p2)

]
a†

in(k1)a†
in(k2)|0〉

= tp1δ(p1 − k1)δ(p2 − k2) + tp1δ(p1 − k2)δ(p2 − k1)

− i

√
2

τ
tp1〈p+

1 |σ−(p2)|k1k
+
2 〉,

where we used the orthogonality of the scattering eigen-
states. Thus, to determine the two-photon S matrix, we
will need to calculate 〈p+

1 |σ−(t)|k1k
+
2 〉 and take its Fourier

transform.
Using (10), we obtain the differential equation that de-

scribes 〈p+
1 |σ−(t)|k1k

+
2 〉:

d

dt
〈p+

1 |σ−(t)|k1k
+
2 〉 = i

√
2

τ
〈p+

1 |σz(t)ain(t)|k1k
+
2 〉

−
(

1

τ
+ i�

)
〈p+

1 |σ−(t)|k1k
+
2 〉. (20)
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If we can simplify the part that depends on σzain, we can then
solve the differential equation. Since ain is an annihilation
operator for scattering states, by using (7) we can write

〈p+
1 |σz(t)ain(t)|k1k

+
2 〉

= 1√
2π

[〈p+
1 |σz(t)|k+

2 〉e−ik1t + 〈p+
1 |σz(t)|k+

1 〉e−ik2t ],

which, using (19), results in

= 1√
2π

1

π
e−i(k1+k2−p1)t s∗

p1
(sk1 + sk2 )

− 1√
2π

δ(k2 − p1)e−ik1t − 1√
2π

δ(k1 − p1)e−ik2t ,

which is what we were after. We can now solve the first-order
ordinary differential equation (20) in a way very similar
to the derivation that led to (18). After some algebra and
rearrangement we get

〈p+
1 |σ−(t)|k1k

+
2 〉

= − 1√
2π

1

π
sk1+k2−p1s

∗
p1

(sk1 + sk2 )e−i(k1+k2−p1)t

+ 1√
2π

δ(k2 − p1)sk1e
−ik1t + 1√

2π
δ(k1 − p1)sk2e

−ik2t .

Taking the Fourier transform of the expression above gives us

〈p+
1 |σ−(p2)|k1k

+
2 〉

= − 1

π
δ(k1 + k2 − p1 − p2)sp2s

∗
p1

(sk1 + sk2 )

+ sk1δ(k2 − p1)δ(k1 − p2) + sk2δ(k1 − p1)δ(k2 − p2).

Lastly, using the relationship tp1s
∗
p1

= sp1 , we obtain

〈0|aout(p1)aout(p2)a†
in(k1)a†

in(k2)|0〉
= tk1 tk2 [δ(k2 − p1)δ(k1 − p2) + δ(k1 − p1)δ(k2 − p2)]

+ i
1

π

√
2

τ
δ(k1 + k2 − p1 − p2)sp1sp2 (sk1 + sk2 ). (21)

This final result agrees with previous calculations using
advanced techniques such as the Bethe ansatz3 in real space
[10], the algebraic Bethe ansatz [14], and the Lehmann-
Symanzik-Zimmermann (LSZ) formalism in quantum field
theory [18,19]. The derivation here, however, is perhaps more
elementary, and thus may serve to make such results more
accessible. In addition, the results relate the presence of the
background fluorescence to the excitation of the atoms.

VI. COHERENT-STATE COMPUTATION

A traditional use of the input-output formalism is to
calculate the correlation function when the input is in a
coherent state. Here we briefly outline such a calculation
for our system in order to contrast it with the single- and

3Equations (118)-(119) in [10] and equation (21) in this article are
the same with the following notational correspondence: � = 2/τ ,
	1 = (k1 − k2)/2, 	2 = (p1 − p2)/2, E1 = k1 + k2, E2 = p1 + p2.

two-photon calculations of the previous two sections. For this
purpose, we consider a coherent input state |αk〉, such that

ain(t)|α+
k 〉 = αe−ikt |α+

k 〉,
and calculate, as an example, the G(1) correlation function

G(1)(t ′,t) = 〈α+
k |a†

out(t
′)aout(t)|α+

k 〉
〈α+

k |α+
k 〉 .

Using (11), we have

G(1)(t,t ′) = |α|2e−ik(t−t ′) + iαe−ikt

√
2

τ
〈σ+(t ′)〉

− iα∗eikt ′
√

2

τ
〈σ−(t)〉 + 2

τ
〈σ+(t ′)σ−(t)〉, (22)

where for any operator O, 〈O〉 ≡ 〈α+
k |O|α+

k 〉.
Each of the expectation values in (22) can be calculated

using the input-output formalism. Taking the expectation
values in (9) and (10) results in

d

dt
〈σz(t)〉 = −i2

√
2

τ
[αe−ikt 〈σ+(t)〉 − α∗eikt 〈σ−(t)〉]

− 2

τ
〈σz(t) + 1〉,

d

dt
〈σ−(t)〉 =

(
−i� − 1

τ

)
〈σ−(t)〉 + iαe−ikt

√
2

τ
〈σz(t)〉,

d

dt
〈σ+(t)〉 =

(
i� − 1

τ

)
〈σ+(t)〉 − iα∗eikt

√
2

τ
〈σz(t)〉.

Directly solving the equations above provides the values of
〈σ+(t ′)〉 and 〈σ−(t)〉 in (22), while the 〈σ+(t ′)σ−(t)〉 term can
be computed using the quantum regression theorem. These
calculations can be found in standard textbooks [22,23] in
sections related to the properties of resonance fluorescence,
and we will not repeat them here. Instead, based on the outline
above, we make a few observations about the coherent-state
computations, as commonly done, and the one- and two-
photon computations as carried out in this article.

(1) The input-output formalism provides a set of nonlinear
operator equations. Therefore, all computations, by necessity,
involve the conversion of such operator equations into ordinary
differential equations for various operator matrix elements.
While the coherent-state computations typically involve taking
expectation values in terms of the input states, the one- and
two-photon computations involve matrix elements that have
different photon numbers.

(2) It is certainly reasonable to expect that the one- or
two-photon S matrices can be obtained by analyzing various
correlation functions for a weak coherent-state input. Indeed,
the connection between the two-photon out wave function and
the g(2) correlation function has been pointed out in [10], and it
is likely that stronger connections exist. This will be carried out
in future work. However, if the aim is to determine the S matrix
in the few-photon-Fock-state Hilbert space, the computation
as discussed here should be far more direct.

(3) We emphasize that the few-photon computations yield
the S matrix in the few-photon Hilbert space, and thus
provide a complete description of all physical processes in the
few-photon-Fock-state Hilbert space. In contrast, computing
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G(1) or G(2) correlation functions alone do not in general
completely specify the out state for a given incident coherent
state. Certainly, in the majority of quantum optics experiments
at present, one probes a quantum system with a coherent
input state and obtains information about the system by
measuring different correlation functions. The coherent-state
computations, as briefly reproduced above, are adequate to
describe these experiments. However, these quantum systems
are beginning to be considered as prospective devices which
will eventually process quantum states [36,37]. In such
an engineering context, one ultimately has to be able to
completely specify the output quantum states. It is in this
respect that we hope the few-photon transport computations
will prove to be valuable for future engineering applications.

VII. CONCLUSION

In this article, we extend the input-output formalism of
quantum optics to analyze one- and two-photon scattering in
waveguides with a two-level atom inside. We develop the rela-
tionship between the input-output operators and the scattering
theory, which in turn enables us to analytically calculate the
photon scattering matrix elements with a minimum amount
of algebra. We also contrast our calculations for few-photon
Fock-state transport with the conventional application of input-
output formalism for coherent-state transport. This work helps
us go beyond the correlation function analysis in input-output
formalism and leads to exact solutions for the scattering matrix
elements.
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APPENDIX A: TWO-MODE MODEL

In this section we write the Hamiltonian for the case when
photons are allowed to propagate in both directions within the
waveguide. We refer to this case as the two-mode model. After
introducing the Hamiltonian, we use the results of Secs. IV and
V to calculate one- and two-photon reflection and transmission
coefficients for right-to-left moving fields.

When photons propagate to the right (r) and to the left (�),
we will need to add extra terms to the Hamiltonian. We begin
as we did in Sec. II and write

H̃0 =
∫ ∞

0
dβωr (β)r†βrβ +

∫ 0

−∞
dβω�(β)�†β�β

for the waveguide part of the Hamiltonian. The dispersion
relation for the left-moving modes ω�(β) is the mirror image
of the one for the right-moving modes. We linearize the
left and right branches of the dispersion relationship at β =
±β0 to get ωr ≈ ω0 + vg(β − β0) and ω� ≈ ω0 − vg(β + β0).
Following linearization, we extend the limits of integration
to ±∞, make a change of variables β 
→ β ∓ β0 for the
right and left waveguides, respectively, and define ω = vgβ,
rω ≡ rβ+β0/

√
vg , and �ω ≡ �β−β0/

√
vg to get

H0 =
∫ ∞

−∞
dωω(r†ωrω − �†ω�ω). (A1)

The interaction part of the Hamiltonian is given by

H1 = 1

2
�σz + V√

vg

∫ ∞

−∞
dω[σ+(rω + �ω) + (r†ω + �†ω)σ−].

(A2)

Since the total excitation operator

NE =
∫ ∞

0
dβr†βrβ +

∫ 0

−∞
dβ�

†
β�β + 1

2
σz

commutes with the Hamiltonian, we subtracted the term ω0NE

from the Hamiltonian and set � = �̃ − ω0 in the derivation,
mimicking the steps in Sec. II.

Now that we have the Hamiltonian, we can write down the
Heisenberg equations of motion and define the input-output
operators for the fields as illustrated in detail for a chiral model
in Appendix C. The equations for the annihilation operators
are

drω(t)

dt
= −i [rω,H ] = −iωrω − iṼ σ−,

d�ω(t)

dt
= −i[�ω,H ] = +iω�ω − iṼ σ−,

where Ṽ = V/
√

vg . The definitions for the input and output
operators for right-going fields are the same as in Appendix C,
and we get

rout(t) = rin(t) − i

√
2

τ
σ−(t),

where τ is defined in (C6). Left-going modes have a group
velocity which is the negative of the right-going modes and
that leads to a negative sign in (A1). As a result, starting from
the the definition of the input and output operators in (5)–(6),
the input and output operators for left-going modes have the
form

�out(t) = 1√
2π

∫
dω�ω(t1)eiω(t−t1),

�in(t) = 1√
2π

∫
dω�ω(t0)eiω(t−t0),

�out(t) = �in(t) − i

√
2

τ
σ−(t),

where we note the change of sign in the frequency variable.
Using these results we can show that

dσ−
dt

= i

√
2

τ
σzrin + i

√
2

τ
σz�in − 2

τ
σ− − i�σ−,

which is in a form similar to those that we get in temporal
coupled-mode theory [38].

We now have all the tools to solve for the scattering
that takes place in the two-mode model. Let us define even
and odd combinations of the operators for the right- and
left-propagating modes as

aω = rω + �−ω√
2

(even), åω = rω − �−ω√
2

(odd). (A3)
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Using these definitions in (A1)–(A2), we can show

H0 =
∫

dωa†
ωaω + å†

ωåω ≡ He,0 + Ho,0,

H1 = 1

2
�σz +

√
2V√
vg

∫
dω

(
σ+aω + a†

ωσ−
) ≡ He,1,

where we see that the interaction part of the Hamiltonian
depends only on the even combination of modes. In Secs. IV
and V we solved for H = He,0 + He,1 for a rescaled value
of V . The odd part Ho,0 is interaction free and hence is also
solved. From (A3) we get

rin/out(ω) = ain/out(ω) + åin/out(ω)√
2

,

(A4)

�out(ω) = aout(−ω) − åout(−ω)√
2

,

where we wrote the Fourier transforms of two-mode input-
output operators in terms of the combinations of even and odd
fields.

The get the one-photon reflection probability, we look at
the scattering matrix element which corresponds to a right-
propagating input photon and a left-propagating output photon

〈0|�out(p)r†in(k)|0〉
= 1

2 〈0|[aout(−p) − åout(−p)][a†
in(k) + å†

in(k)]|0〉
= 1

2 〈0|aout(−p)a†
in(k)|0〉 − 1

2 〈0|åout(−p)å†
in(k)|0〉

= 1
2 (tk − 1)δ(p + k) ≡ r̄kδ(p + k).

Here we used (A4) and (18) to get the one-photon reflection co-
efficient r̄k . Similarly, the one-photon transmission coefficient
t̄k is given by

〈0|rout(p)r†in(k)|0〉 = 1
2 (tk + 1)δ(p − k) ≡ t̄kδ(p − k).

Two-photon calculations require adding another input-
output pair. For instance, the scattering matrix element
associated with one photon scattering to the right, another
to the left when two photons initially propagate to the right is
given by

〈0|rout(p1)�out(p2)r†in(k1)r†in(k2)|0〉
= 1

4 [〈0|aout(p1)aout(−p2)a†
in(k1)a†

in(k2)|0〉
− 〈0|aout(p1)åout(−p2)a†

in(k1)å†
in(k2)|0〉

− 〈0|aout(p1)åout(−p2)å†
in(k1)a†

in(k2)|0〉
+ 〈0|åout(p1)aout(−p2)a†

in(k1)å†
in(k2)|0〉

+ 〈0|åout(p1)aout(−p2)å†
in(k1)a†

in(k2)|0〉
− 〈0|åout(p1)åout(−p2)å†

in(k1)å†
in(k2)|0〉]

= t̄k1 r̄k2δ(k1 − p1)δ(k2 + p2) + r̄k1 t̄k2δ(k1 + p2)

× δ(k2 − p1) + 1
4Bδ(k1 + k2 − p1 + p2),

where from (21)

B = i
1

π

√
2

τ ′ sp1s−p2 (sk1 + sk2 ).

We note that τ ′ = τ/2 due to an extra factor of
√

2 before V

in the definition of H1. These results agree with equations (52)
and (130) in [10].

APPENDIX B: HAMILTONIAN IN THE
CONTINUUM LIMIT

This section will summarize the steps taken to obtain the
continuum form of the Hamiltonian from its discrete version.
We will follow the approach in [24,25].

The discrete variables are assumed to be for those in a
one-dimensional (1D) cavity of length L. The mode spacing
in the cavity is given by 	β = 2π/L. In this 1D cavity, the
free-space electromagnetic Hamiltonian H0 is given by

H0 =
∑

β

ωβâ
†
β âβ,

with the commutator relationship [âβ ,â
†
β ′ ] = δβ,β ′ . Now, we

will convert the sum into an integral by the equivalence
(	β

∑
β) → (

∫
dβ) to get

H0 = L

2π

∫
dβωβâ

†
β âβ .

The continuous mode operator ãβ is related to the discrete
mode âβ by

ãβ =
√

L

2π
âβ,

which results in

H0 =
∫

dβωβã
†
β ãβ .

The commutator relationship [ãβ ,ã
†
β ′ ] = L

2π
δβ,β ′ in the limit

L → ∞ becomes

[ãβ ,ã
†
β ′ ] = δ(β − β ′).

To see this result, define f (β) = L
2π

δβ,0. Integrating f (β) will
give ∫

dβf (β) → 2π

L

∑
β

f (β) = 2π

L

L

2π
= 1.

As a result, the correct Hamiltonian in the continuum limit is

H0 =
∫

dβω(β)ã†
β ãβ,

with [ãβ ,ã
†
β ′ ] = δ(β − β ′). It is then easy to show that

1 =
∫

dβ|β〉〈β|,

where |β〉 = ã
†
β |0〉, since

〈γ |
∫

dβ|β〉〈β|ζ 〉 =
∫

dβδ(γ − β)δ(β − ζ ) = δ(γ − ζ ).

In the discrete case

H1 = 1

2
�̃σz + V ′

√
L

∑
β

(σ+âβ + â
†
βσ−),
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where V ′ is the physical coupling constant. The factor L−1/2

arises because the photon as created by â
†
β has a normalization

constant L−1/2. In the continuum case we get

H1 = 1

2
�̃σz + V ′

√
L

L

2π

√
2π

L

∫
dβ(σ+ãβ + ã

†
βσ−)

= 1

2
�̃σz + V ′

√
2π

∫
dβ(σ+ãβ + ã

†
βσ−).

Thus, the coupling constants in the discrete (V ′) and the
continuum (V ) cases differ by a factor of (2π )−1/2.

APPENDIX C: DERIVATION OF THE INPUT-OUTPUT
FORMALISM

Here we provide a derivation of the input-output equa-
tions (9)–(11). This derivation closely follows [21,22]. Based
on the Hamiltonian (2)–(3), and the definition Ṽ ≡ V/

√
vg ,

the Heisenberg equations of motion for the operators are

i
dak

dt
= kak + Ṽ σ−, (C1)

i
dσ−
dt

= �σ− − Ṽ

∫
dk σzak, (C2)

i
dσz

dt
= 2Ṽ

∫
dk(−a

†
kσ− + σ+ak). (C3)

After multiplying (C1) by the integration factor exp(ikt), we
integrate it from an initial time t0 < t to get

ak(t) = ak(t0)e−ik(t−t0) − iṼ

∫ t

t0

dt ′σ−(t ′)e−ik(t−t ′). (C4)

We define the input operator as

ain(t) = 1√
2π

∫
dk ak(t0)e−ik(t−t0),

which satisfies the commutation relation

[ain(t),a†
in(t ′)] = δ(t − t ′).

We further introduce a field operator

�(t) = 1√
2π

∫
dk ak(t)

and integrate (C4) with respect to k to get

�(t) = ain(t) − i
Ṽ

2

√
2πσ−(t) = ain(t) − i

√
1

2τ
σ−(t). (C5)

Here, notice that we integrate over half the delta function
[21], which results in a factor of 1

2 and τ is defined
as

1

τ
≡ πṼ 2. (C6)

Furthermore, plugging (C5) into (C2) and (C3) results in

dσ−
dt

= i

√
2

τ
σzain − 1

τ
σ− − i�σ−,

dN

dt
= −i

√
2

τ
(σ+ain − a†

inσ−) − 2

τ
N.

Here N = (σz + 1)/2. Thus the spontaneous emission rate
is 2/τ . We could have also directly calculated dN/dt from
dσ−/dt , since N = σ+σ−.

Similarly, we integrate (C1) up to a final time t1 > t , and
define an output operator

aout(t) = 1√
2π

∫
dkak(t1)e−ik(t−t1),

which results in

�(t) = aout(t) + i

√
1

2τ
σ−(t). (C7)

Combining (C5) and (C7), we finally obtain

aout(t) = ain(t) − i

√
2

τ
σ−(t).
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