
Plasmonic Stripe Waveguide Coupler with Integrated

Wavelength Division Multiplexer

by

Ongun Arısev

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical and Electronics Engineering

May 16, 2017



Plasmonic Stripe Waveguide Coupler with Integrated Wavelength Division

Multiplexer

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ongun Arısev

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Asst. Prof. Şükrü Ekin Kocabaş

Prof. İrşadi Aksun

Asst. Prof. Alexandr Jonas

Date:



To my mother and father…

iii





TABLE OF CONTENTS

List of Tables xii

List of Figures xiii

Nomenclature xvii

Chapter 1: Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background Information 5

2.1 Brief review of electromagnetic theory . . . . . . . . . . . . . . . . . . 5

2.2 Permittivities of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Extended Drude Model . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Volume Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Surface Plasmon Polaritons . . . . . . . . . . . . . . . . . . . . 12

Chapter 3: Single Scatterers 18

3.1 Single Grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Rectangular Nanoslit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Δ-antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 4: SPP beam launcher 32

4.1 Reproduction of Hermite-Gauss SPP Beam . . . . . . . . . . . . . . . . 32

4.2 Stripe Waveguide Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



Chapter 5: Scalar Wave Theory 39

5.1 Antenna Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Linear Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Coupler Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 6: Mode Coupling 47

6.1 Nanoslits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Δ-antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Design with 𝑤𝑏 = 500 nm, ℎ = 800 nm . . . . . . . . . . . . . . 51

6.2.2 Design with 𝑤𝑏 = 900 nm, ℎ = 800 nm . . . . . . . . . . . . . . 52

6.2.3 Design with 𝑤𝑏 = 900 nm, ℎ = 800 nm with SPP on air-metal . . 54

Chapter 7: Conclusion and Future Work 56

Appendix A: Sun Grid Engine Scripts 60

Appendix B: Matlab Codes 63

B.1 Characterization of single scatterer . . . . . . . . . . . . . . . . . . . . 63

B.2 Fitting Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3 Scattering Analysis Script . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.4 Hermite-Gauss SPP beam reproduction . . . . . . . . . . . . . . . . . . 73

B.5 Triplexer algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.5.1 Original Triplexer Algorithm . . . . . . . . . . . . . . . . . . . 77

B.5.2 Triplexer for Δ-antennas . . . . . . . . . . . . . . . . . . . . . . 81

Appendix C: Lumerical FDTD Solutions Scripts 85

C.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.2 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.3 Scatterer positioning for reproduction of SPP beam . . . . . . . . . . . 88

C.4 Scatterer positioning for triplexer . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 90

vi



ABSTRACT

Plasmonics is the research field concerned with the interaction between free elec-

trons on a metal surface and electromagnetic waves. It is possible to design nanos-

tructures which exploit these interactions to manipulate light at the nanoscale -much

beyond the diffraction limit- with the advent of new techniques and devices. Integra-

tion with electronic circuits, plasmonic lasers, biosensors, chemical sensors, surface-

enhanced Raman spectroscopy and plasmonic lenses are among the ever increasing

applications of the field [1].

Coupling from free-space electromagnetic waves to surface plasmon polaritons

(SPP) and decoupling from SPPs back to free-space electromagnetic waves is one of

the main considerations while designing a nanophotonic chip. Directing and routing

the generated SPP beams are also another concern, and usually coupling and direction

of SPPs are realized with the same structure. These structures are usually an array

of scatterers, but a single scatterer might be sufficient. There is on-going research

on various scatterer geometries, designs and fabrication techniques to optimize the

efficiency of SPP generation. Furthermore, there are variouswavelength demultiplexer

designs featuring periodic or aperiodic arrays of scatterers.

In this thesis the aim is to direct optical signals of different wavelengths to three

1 μm wide stripe waveguides whose centers are separated by 4 μm at the end of a gold

film. To achieve this aim we first experimented with an SPP beam launcher which

excites an SPP beamwith a predefined amplitude and phase. However, we were unable

to couple into the stripe waveguide mode, because this approach is limited in the sense

that it cannot accommodate for a variation in the amplitude and phase that are smaller

than the dimensions of the scatterer. Thus we decided to use a different method.
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Moving on to an established wavelength demultiplexer design utilizing nanoslits

[2] was the new starting point. After mastering the iterative algorithm stripe waveg-

uides were put at the focal positions to study the coupling of SPPs of different wave-

lengths into corresponding stripe waveguide modes. Simulations were done for two

types of scatterers: Δ-antennas and nanoslits. It was observed that owing to the uni-

directionality Δ-antennas outperformed their nanoslit counterparts in coupling effi-

ciency by nearly two folds. This design may be generalized for different wavelengths

and a larger number of focal points.
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ÖZETÇE

Plazmonik metal yüzeylerdeki serbest elektronların ve elektromanyetik dalgaların

etkileşimini inceleyen bir araştırma alanıdır. Yeni tekniklerin ve cihazların icadıyla bu

etkileşimlerden faydalanarak ışığı saçılım limitinin altındaki boyutlarda kontrol edebi-

len nano yapılar geliştirmek mümkündür. Elektronik devrelerle entegrasyon, plazmo-

nik lazerler, biyolojik ve kimyasal sensörler, Raman spektroskopisi(SERS) ve plazmo-

nik lensler sayısı sürekli artan uygulama alanlarından bazılarıdır [1].

Boş uzayda yol alan elektromanyetik dalgaları yüzey plazmon polaritonlarına

(YPP) eşleştirmek ve YPP’leri boş uzayda yol alan elektromanyetik dalgalara çevirmek

nanofotonik bir çip tasarımında temel hususlardandır. YPP ışın demetlerini istenilen

şekilde yönlendirmek ise diğer bir husustur. Genellikle eşleştirme ve yönlendirme

nanoboyutlarda aynı nano yapılarla sağlanır. Saçıcı geometrileri, YPP oluşumu op-

timizasyonu için dizayn ve üretim teknikleri üzerine araştırmalar sürmektedir. Ek

olarak saçıcı dizileri kullanan dalga boyu çözücüler geliştirilmiştir.

Bu tezdeki amaç farklı dalga boylarına sahip optik sinyalleri altın film üzerinde

merkezleri arasındaki uzaklık 4 μm olacak şekilde ayarlanmış 1 μm genişliğe sahip şerit

dalga kılavuzlarının kipleri ile eşleştirmektir. Bu amaca ulaşmak için öncelikle belirli

bir genlik ve faza sahip YPP demeti uyaran YPP ışınlayıcılar ile deneme yaptık. Ancak

bu şekilde şerit dalga kılavuzu kipi ile eşleştiremedik çünkü bu yaklaşımda eşletirilmek

istenilen modun genlik ve fazın saçıcının boyutun kullanılan saçıcılar mertebesinde

olması gerekiyor. Bunun üzerine farklı bir yöntem kullanmaya karar verdik.

Nano yarıklar kullanan daha önceden çalışılmış bir dalga boyu ayrıştırıcı dizaynı-

nın yinelemeli algoritmasını değiştirip uygulamaya karar verdik. Farklı dalga boyuna

sahip YPP’leri dalga kılavuzu kiplerine eşleştirmek için odak noktalarına plazmonik

şerit dalga kılavuzları konmuştur. Bu işlem Δ-antenler ve nano yarık dizileriyle tek-

rarlanması sonucunda Δ-antenlerin yaklaşık iki kat daha fazla performans sağladığını

gözlemledik.
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NOMENCLATURE

𝜖 Permittivity (Fm−1)

𝜖0 Free space permittivity 8.85 × 10−12 (F/m)

𝜖𝑟 Relative permittivity(unitless)

B Magnetic induction field vector (T)

D Electric displacement field vector (C/m2)

E Electric field vector (Vm−1)

H Magnetic field vector (Am−1)

J Current density (A/m2)

𝜇 Magnetic permeability (Nm−2)

𝜇 Relative permeability (unitless)

𝜇0 Free space permeability 4� × 10−7 (N/m2)

𝜌𝑓 Free charge (C)

AOTF Acousto Optic Tunable Filter

SPP Surface Plasmon Polariton

TE Transverse Electric

TM Transverse Magnetic





Chapter 1

INTRODUCTION

1.1 Literature Review

Surface plasmon polaritons (SPPs) were described mathematically as early as the be-

ginning of the 20th century by Sommerfeld and Zenneck, but these works were con-

cerned with radio waves instead of visible light [3, 4]. An unexpected intensity drop

was observed when visible light was reflected off a grating by Wood, but a physical

meaning could not be associated to it then [5]. This missing information was provided

by Fano in 1941 and he explained the lost energy was coupled into surface waves

[6]. In 1957 Ritchie experimented with fast electrons and thin films establishing the

theoretical description of surface plasmons for the first time [7]. Thereafter, Ritchie

attributed the unexpected reflections losses on gratings in the optical domain to sur-

face plasmon resonances [8]. The collective oscillation of electrons on a metal surface

was also handled by Economou using the complete set of Maxwell’s equations [9]. The

term surface plasmon polariton was coined much later in 1974 by Cunningham and

co-workers [10]. The main problem with photonics is the inability to confine the light

into dimensions less than that of the wavelength of the light. Plasmonics essentially

serve as the bridge between semiconductor electronics and dielectric photonics, since

photonic devices are bigger and faster compared to semiconductor devices [1, 11]. The

major applications of SPPs are biosensors, near-field optics, surface-enhanced Raman

spectroscopy [12]. Plasmonics is the field concerned with SPPs and it is a very active

field as evidenced by exponentially increasing number of publications [13].

Designing SPP launchers is vital in plasmonic applications and several different

SPP launchers were designed [14]. Here some SPP launchers will be briefly recalled.

The nondiffracting Airy SPP beams are of particular interest as they do not diffract and

feature self-healing capabilities. The launcher in this case consists of a metallic phase
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grating [15]. Another nondiffracting option is the Cosine-Gauss plasmon beam; this

beam launcher consisting of intersecting metallic gratings was developed and it can

propagate on a straight line for up to 80 μm [16]. Additionally SPP beam collimator

[17], Mathieu andWeber SPP beam launchers were also developed. Mathieu beam pre-

serves its shape while propagating along an elliptic trajectory, whereas Weber beam

preserves its shape while propagating along a parabolic trajectory; additionally they

possess self-healing capabilities just like the Airy beam [18]. One of the latest devel-

opment in the field is the realization of the possibility to set the amplitude and phase

of the SPPs as desired via tuning the orientation of two slits illuminated under circu-

larly polarized laser incident, this is expected to pave the way for the development of

plasmonic imaging and lithography devices [19].

An integrated compact plasmonic wavelength demultiplexer proves useful in spec-

tral imaging and sensing applications by redirecting SPPs of different wavelengths

to different focii positions and various methods are used to achieve this purpose [2].

Drezet et al. realized demultiplexing of SPP beams using a gold photonic crystal man-

ufactured with standard electron-beam lithography technique [20]. Laux et al. de-

veloped a technique enabling the recording of the spectral image cube1 in a single

exposure in contrast with the conventional spectral imaging techniques via utilizing

SPPs. The advantage over the conventional method is that long exposure times are not

needed [21]. In 2010 Chenglong Zhao and Jiasen Zhang proposed a design using con-

centric grooves perforated on a gold film; this design resulted in a higher resolution

compared to the preceding designs [22]. However, most of these designs inherit the

disadvantage of being limited to a particular wavelength and not entirely applicable

to integration into photonic circuits due to being periodic and including the coupling

element. In 2011 a nanoarray design is proposed that achieves broad band focusing

and demultiplexing at the same time [23]. Later in 2014 Pierre Wahl et al. devised a

method constructing modal demultiplexer with nanoslits located on the surface of a

metal film using their modal source radiator model for speed in the iterative algorithm

[24, 25]. There are also holographic approaches such as the one by Daniel Wintz et al.

which uses a holographic metalens to focus incident SPP beams on predefined focal

1Image of an object is 2D and the wavelength is the third dimension
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positions and the polarization of the incident beam determines whether switching will

be realized or not [26]. However coupling to stripe waveguides at the end of the device

region is not examined in these studies.

Wavelength division multiplexing (WDM) is commonly used in optical communi-

cations to achieve increased rate of data transfer. In this approach the optical signals

of different wavelengths (or colors) carry different bits of the information. Our ob-

jective in this thesis is to propose a device which realizes coupling from free-space

to plasmonic stripe waveguides together with WDM functionality. The same struc-

ture demultiplexes the incident optical signal, and couples its constituent channels at

different wavelengths to plasmonic stripe waveguides.

1.2 Thesis Outline

Chapter 2 is a summary of basic concepts from the electromagnetic theory such as

Maxwell’s equations, constitutive relations and boundary conditions. Then permittiv-

ity models of metals are explored in detail. This chapter finishes with the analysis of

SPP propagation on metal-dielectric interfaces.

In Chapter 3 plasmonic scatterers are introduced and their scattering patterns are

investigated in detail with finite difference time domain simulations. The scatters of

concern in this thesis are 1D gratings, rectangular nanoslits and triangular antennas.

The dependence of the scattering pattern on the in-plane angle for a single scatterer is

characterized and a fit is developed.

In Chapter 4 aperiodic arrays of triangular scatterers are investigated. The aim

of these arrays is to generate the electric field amplitude and phase of a given SPP

beam. The case under investigation here is a second-order Hermite-Gauss beam, but

this method is applicable for generating an arbitrary beam provided that the features

of the beam are of greater size then the dimensions of the individual antennas in the

array. We found out that this method is not applicable in our case.

In Chapter 5 antenna theory and array factor in particular is discussed before mov-

ing on to the algorithm which we use in locating the scatter positions in the aperiodic

array. Then the algorithm is explained in a step by step manner.

In Chapter 6 the results of the simulations done for mode coupling are discussed.
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Here we have one simulation set for nanoslit arrays and three simulation sets for the Δ-
antenna arrays. Each simulation set consists of two simulations: one with the waveg-

uide and one without.

Chapter 7 is the summary and discusses what can be done in the near future to

improve the performance of the device.



Chapter 2

BACKGROUND INFORMATION

2.1 Brief review of electromagnetic theory

The following set of first-order partial differential equations are known as classical

Maxwell’s equations [27]:

∇ ⋅ D = 𝜌𝑓 (2.1a)

∇ ⋅ B = 0 (2.1b)

∇ × H = J + 𝜕D
𝜕𝑡 (2.1c)

∇ × E + 𝜕B
𝜕𝑡 = 0 (2.1d)

In order to govern the dynamics of interacting electromagnetic fields and charged

particles these equations are combined with Lorentz force equation and Newton’s sec-

ond law of motion. Respectively, these equations are as follows [28, 29]:

F = 𝑞(E + v × B) (2.2)

F = 𝑑P
𝑑𝑡 (2.3)

We also have the constitutive equations relating D with E and H with B. These are as

follows:

D = 𝜖E = 𝜖0𝜖𝑟E (2.4)

B = 𝜇H = 𝜇0𝜇𝑟H (2.5)

Here we made the implicit assumption that the media are linear, yet the media may

still be anisotropic and this may be realized by treating 𝜖 and 𝜇 as tensors. These quanti-

ties are called electric permittivity and magnetic permeability, respectively. However,

in this thesis we will be dealing with linear, isotropic and non-magnetic media. 1

1Non-magnetic means that the permeability of the material is very close to 𝜇0
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It should also be noted that the constitutive relations hold in the frequency and

wave-vector domain as the connection in Equation 2.4 and Equation 2.5 can be nonlocal

in time and space.

D(x, 𝑡) =
ˆ

𝑑3𝑥 ′
ˆ

𝑑𝑡 ′𝜖(x′ , 𝑡 ′)E(x − x
′ , 𝑡 − 𝑡 ′) (2.6)

𝑓 (k, 𝜔) =
ˆ

𝑑3𝑥
ˆ

𝑑𝑡𝑓 (x, 𝑡)𝑒−𝑖k⋅𝑥+𝑖𝜔𝑡 (2.7)

With the introduction of the above Fourier transform Equation 2.4 and Equation 2.5

can be rewritten as follows:

D(k, 𝜔) = 𝜖(k, 𝜔)𝐸(k, 𝜔) (2.8)

B(k, 𝜔) = 𝜇(k, 𝜔)𝐻 (k, 𝜔) (2.9)

Using Stoke’s and Gauss’ lawsMaxwell’s equations can be written in integral form and

this is beneficial for analyzing the behavior of electromagnetic fields near boundaries

[29].

‹
𝑆
D ⋅ 𝑑a = 𝑄𝑓 (2.10a)

‹
𝑆
B ⋅ 𝑑a = 0 (2.10b)

˛
𝐶
H ⋅ 𝑑l = 𝐼𝑓 +

𝑑
𝑑𝑡
ˆ
𝑆
D ⋅ 𝑑a (2.10c)

˛
𝐶
E ⋅ 𝑑l = − 𝑑

𝑑𝑡
ˆ
𝑆
B ⋅ 𝑑a (2.10d)

In the first two equations above 𝑆 is any closed surface, whereas in the remaining two

𝑆 is a surface bounded by the closed contour 𝐶 .
Using Equation 2.10 with an appropriate selection of tiny loops and boxes pene-

trating into two different media at an interface we arrive at the continuity equations
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for electromagnetic fields.

𝜖1𝐸⟂1 − 𝜖2𝐸⟂2 = 𝜎𝑓 (2.11a)

𝐵⟂1 − 𝐵⟂2 = 0 (2.11b)
1
𝜇1

B∥1 − 1
𝜇2

B∥2 = K𝑓 × �̂� (2.11c)

E∥1 − E∥2 = 0 (2.11d)

These equations prove useful when solving for waveguide modes and deriving the

electromagnetic fields at interfaces.

The refractive index is defined as the ratio of the speed of the propagation of an

electromagnetic wave in free space to the speed of the propagation of an electromag-

netic wave in a particular medium.

𝑛 = 𝑐/𝑣 =
√

𝜇𝜖
𝜇0𝜖0

= √𝜖𝑟 (2.12)

The justification for the second simplification follows from the fact that we are deal-

ing with non-magnetic materials. It is evident from the above equation that when

𝜖 is complex 𝑛 is also complex, and vice versa. Employing the notation of putting a

tilde over complex quantities the refractive index, attenuation constant and the electric

permittivity are [30]:

�̃� = 𝑛 + 𝑖𝜅 (2.13a)

̃𝜖𝑟 = 𝜖1 + 𝑖𝜖2 (2.13b)

�̃�2 = ̃𝜖𝑟 (2.13c)

𝜖1 = 𝑛2 − 𝜅2 (2.13d)

𝜖2 = 2𝑛𝜅 (2.13e)

𝑛2 = 1
2(𝜖1 + √𝜖21 + 𝜖22 ) (2.13f)

𝜅2 = 1
2(−𝜖1 + √𝜖21 + 𝜖22 ) (2.13g)

2.2 Permittivities of metals

Since surface plasmon polaritons can propagate along metal-dielectric interfaces the

permittivity of metals play a huge role in the distribution of the fields. The frequently
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used mathematical models for the permittivities of materials are Lorentz model, Drude

model and Extended Drude model. In this section we will first focus on the Lorentz

model and then the Drude model.

2.2.1 Lorentz Model

In Lorentz model the electron is modeled as a damped harmonic oscillator. The damp-

ing term accounts for the fact that the electrons can loose energy by collisional pro-

cesses. Here the motion of the nucleus is disregarded since it is massive compared to

electrons. So we can start by writing the equation of motion for the electron [30].

𝑚0
𝑑2𝑥
𝑑𝑡2 + 𝑚0𝛾

𝑑𝑥
𝑑𝑡 + 𝑚0𝜔20𝑥 = −𝑒E (2.14)

Here 𝑚0 is the mass of the electron, 𝛾 is the damping rate, 𝑒 is the magnitude of the

charge of the electron and E is the electric field of the incident electromagnetic wave.

Mathematically this is a second-order, inhomogeneous ordinary differential equation.

We also assume that the incident light is time harmonic, that is the electric field on the

right hand side can be expressed as:

E = E0 cos(𝜔𝑡 + Φ) = E0ℜ(exp(−𝑖𝜔𝑡 − Φ)) (2.15)

Here E0 is the amplitude and Φ is the phase of the incident light which is the driving

term in Equation 2.14. Here the assumption that the driving electric field will impose

an oscillation of is own frequency is made, so the solutions sought are of the following

form:

𝑥(𝑡) = ℜ(𝑋0 exp(−𝑖𝜔𝑡 − 𝜙)) (2.16)

Here 𝑋0 is the complex amplitude of the oscillation of electrons. By plugging Equa-

tion 2.16 into Equation 2.14 we get the following equation2:

−𝑚0𝜔2𝑋0𝑒−𝑖𝜔𝑡 − 𝑖𝑚0𝛾𝜔𝑋0𝑒−𝑖𝜔𝑡 + 𝑚0𝜔20𝑋0𝑒−𝑖𝜔𝑡 = −𝑒E0𝑒−𝑖𝜔𝑡 (2.17)

Solving for 𝑋0 yields:

𝑋0 = −𝑒E0/𝑚0
𝜔20 − 𝜔2 − 𝑖𝛾𝜔 (2.18)

2The phase information is embedded in the amplitudes making them complex.
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This motion of electrons induces a microscopic, time dependent dipole moment p(t)

which in turn yields a macroscopic polarization (dipole moment per unit volume) that

can be incorporated in constitutive relations. The macroscopic polarization is related

to the dipole moment via:

𝑃𝑖𝑛𝑑𝑢𝑐𝑒𝑑 = 𝑁𝑝
= −𝑁𝑒𝑥

= 𝑁𝑒2
𝑚0

1
(𝜔20 − 𝜔2 − 𝑖𝛾𝜔)E

(2.19)

According to the above equation the magnitude of P is small unless the frequency is

close to the resonance frequency 𝜔0. In order to relate the polarization to the relative

permittivity we make use of the relation between the electric displacement field D3,

the electric field E and the polarization vector P. With the assumption that we are

dealing with an isotropic material this relation is as follows:

D = 𝜖0E + P = 𝜖0E + Pbackground + Pinduced

= 𝜖0𝜖𝑟E = 𝜖0E + 𝜖0𝜒E + Pinduced
(2.20)

Comparing Equation 2.19 with Equation 2.20 yields the relative permittivity:

𝜖𝑟 (𝜔) = 1 + 𝜒 + 𝑁𝑒2
𝜖0𝑚0

1
(𝜔20 − 𝜔2 − 𝑖𝛾𝜔) (2.21)

2.2.2 Drude Model

The Drude model treats the metal as having immovable positive ions with a non-

interacting free electron gas. Essentially this model is a special case of the Lorentz

model with no restoring force hence the lattice potential and interaction of electrons

among themselves are not taken into account [31]. The electrons are assumed to os-

cillate in response to the driving field. Collisions damped the motion of electrons and

the collision frequency is denoted with 𝛾 = 1/𝜏 from here on. 𝜏 is the relaxation time

of the free electron gas, and it is on the order of 10−14 s at room temperature. So the

equation of motion in the Lorentz model Equation 2.14 is simplified to:

𝑚0
𝑑2𝑥
𝑑𝑡2 + 𝑚0𝛾

𝑑𝑥
𝑑𝑡 𝑥 = −𝑒E (2.22)

3Bold face letters are used to denote vectors with three components in euclidean space.
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Solving for x(t), the displacement, results in:

𝑥(𝑡) = 𝑒
𝑚0(𝜔2 + 𝑖𝛾𝜔)E(t) (2.23)

Using the same reasoning of deriving the electric permittivity from electric displace-

ment field as before we have the following electric displacement vector 4:

D = 𝜖0E + P = 𝜖0E + Pfree electrons (2.24)

The permittivity follows from the above equation,

𝜖(𝜔) = 1 − 𝜔2𝑝
𝜔2 + 𝑖𝛾𝜔 = 1 − 𝜔2𝑝 𝜏2

𝜔2𝜏2 + 𝑖𝜔𝜏

𝜖real(𝜔) = 1 − 𝜔2𝑝 𝜏2
1 + 𝜔2𝜏2

𝜖imag(𝜔) =
𝜔2𝑝 𝜏

𝜔(1 + 𝜔2𝜏2)

(2.25)

Here for the notational convention 𝜔𝑝 = 𝑁𝑒2/(𝜖0𝑚0) is used. The behavior of Equa-

tion 2.25 can be examined under different frequency ranges. We start by restricting

the discussion to frequencies below 𝜔𝑝 , yet close enough to 𝜔𝑝 such that the product

𝜔 ≫ 𝛾 . In this frequency range the complex part of Equation 2.25 can be neglected.

𝜖(𝜔) = 1 − 𝜔2𝑝
𝜔2 (2.26)

When the frequency is very low compared to the electron collision rate 𝛾 , that is
𝜔 ≪ 𝛾 . This is the frequency range inwhichmetals are absorbing since 𝜖𝑖𝑚𝑎𝑔 ≫ 𝜖𝑟𝑒𝑎𝑙 in
Equation 2.25. In this frequency range the real and complex refractive index calculated

using Equation 2.13 are similar in magnitude.

𝑛 ≈ 𝜅 = √
𝜖𝑖𝑚𝑎𝑔
2 = √

𝜏𝜔2𝑝
2𝜔 (2.27)

The power absorption coefficient is given as

𝛼 = 𝜅𝑘0 = 𝜅2𝜋𝜆 = √
2𝜔2𝑝 𝜏𝜔
𝑐2 (2.28)

By using DC conductivity 𝜎0 = 𝑁𝑒2𝜏/𝑚0 = 𝜔2𝑝 𝜏𝜖0 this equation can be written as

follows:

𝛼 = √2𝜎0𝜔𝜇0 (2.29)

4This time the inherent polarization Pbackground is neglected.
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It is also useful to define a skin depth after which the fields decay by 1/e.

𝜎 = 2
𝛼 = 𝑐

𝜅𝜔 =
√

2
𝜎0𝜔𝜇0

(2.30)

2.2.3 Extended Drude Model

Unfortunately the simple Drude model cannot cover all aspects of the behavior of

metals under illumination especially when the frequency of the incident light is greater

than plasma frequency. For noble metals that are ubiquitously used in the field of

plasmonics such as Au, Ag, Cu and additional polarization term is needed due to the

polarization induced by the d band electrons. Themodification is to introduce the term

P∞ = 𝜖0(𝜖∞ − 1)E (2.31)

and plug this into Equation 2.24 which yields the following after some manipulation.

𝜖(𝜔) = 𝜖∞ − 𝜔2𝑝
𝜔2 + 𝑖𝛾𝜔 (2.32)

This model still far from perfect and breaks down in the regime of visible light where

interband transitions take place.

2.3 Plasmons

In this section volume plasmons, surface plasmon polaritons and localized plasmons

will be discussed. The differences between these concepts will be highlighted.

2.3.1 Volume Plasmons

By combining the two Maxwell curl equations in Equation 2.1, we arrive at the wave

equation5 [31].

∇ × ∇ × E = −𝜇0
𝜕2D
𝜕𝑡2 (2.33)

k(k ⋅ E) − 𝑘2E = −𝜖(k, 𝜔)𝜔
2

𝑐2 E (2.34)

5Thefields are assumed to have a time and position dependence of the form 𝑒−𝑖𝜔𝑡+𝑖k⋅r The substitution
of k for spatial derivatives, −𝑖𝜔 for temporal derivatives and the use of the vector identity ∇×(∇ × A) =
∇(∇ ⋅ A) − ∇2A yields the equation in the second row.
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For transverse waves (k ⋅ E = 0), Equation 2.34 reduces to the following dispersion

relation,

𝑘2 = 𝜖(k, 𝜔)𝜔
2

𝑐2 (2.35)

Whereas for longitudinal waves this implies 𝜖(k, 𝜔) = 0. Using Equation 2.35 with

Equation 2.26 we obtain the explicit dispersion relation for traveling waves,

𝜔2 = 𝜔2𝑝 + 𝑘2𝑐2 (2.36)

From this equation it is obvious that electromagnetic waves with 𝜔 < 𝜔𝑝 cannot prop-

agate inside the metal and get attenuated. If 𝜔 > 𝜔𝑝 the free electrons support trans-

verse electromagnetic wave propagation.

In addition to this it should be noted that 𝜖(𝜔) from Equation 2.26 is 0 at 𝜔 = 𝜔𝑝
with 𝑘 = 0 also. It also follows that D = 0 and E = −P

�0
, which is a pure depolarization

field.

Assuming free electrons to be moving longitudinally with respect to the fixed posi-

tive ions in the metal slab, a collective displacement of these free electrons by 𝑥 results

in a surface charge density of 𝜎 = ±𝑁𝑒𝑥 . From Gauss’ law between the positive ions

and the negative electrons a homogeneous electric field E = 𝑁𝑒𝑥
𝜖0 is created.

This electric field acts as a restoring force for the displaced electrons and the equa-

tion of motion for them are as follows:

𝑁𝑚0 ̈𝑥 = −𝑁𝑒E

𝑁𝑚0 ̈𝑥 = −𝑁
2𝑒2𝑥
𝜖0

̈𝑥 + 𝜔2𝑝 𝑥 = 0

(2.37)

The interpretation of Equation 2.37 is that the free electrons oscillate at 𝜔𝑝 . We as-

sumed that the wavelength is long, so k = 0 and all the electrons move in phase. A

quantum of these oscillations are called bulk plasmons and since they are of longitudi-

nal nature they do not couple to transverse electromagnetic waves [32].

2.3.2 Surface Plasmon Polaritons

Surface plasmon polaritons are electromagnetic waves propagating along dielectric-

metal interfaces, which decay exponentially in the direction perpendicular to the in-

terface. The oscillation of the free electrons (plasma electrons) of the metal are coupled
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to the electromagnetic fields. We first introduce the necessary concepts, equations and

distinctions before delving into the derivations. The insulator (dielectric) is located in

the 𝑧 > 0 half space, whereas the conductor (metal) is located in the 𝑧 < 0 half space.
Using the vector identities

∇ × ∇ × E ≜ ∇(∇ ⋅ E) − ∇2E

∇ ⋅ (𝜖E) ≜ E∇𝜖 + 𝜖∇ ⋅ E = ∇ ⋅ D = 0

we recast the wave equation Equation 2.33

∇(−
1
𝜖E ⋅ ∇𝜖) − ∇2E = −𝜇0𝜖0𝜖

𝜕2E
𝜕𝑡2 (2.38)

The above equation can be simplified further by assuming the dielectric constant 𝜖(r)
has negligible variation over space and the fields are time harmonic with E(r, 𝑡) =
E(r)𝑒−𝑖𝜔𝑡 . The simplified equation is called Helmholtz equation and it reads,

∇2E + 𝑘20𝜖E = 0 (2.39)

Throughout this section we assume propagation in the x direction hence the fields

should be of the form E(𝑥, 𝑦, 𝑧) = E(𝑧)𝑒𝑖𝛽𝑥 , where 𝛽 is the propagation constant of

the traveling wave6. Inserting this into Helmholtz equation yields a simplified wave

equation which is the starting point for the analysis of guided electromagnetic modes

in waveguides. Please note that an analogous equation exists for

𝜕2E(𝑧)
𝜕𝑧2 + (𝑘20𝜖 − 𝛽2)E = 0 (2.40)

Using the Maxwell curl equations Equation 2.1 and replacing 𝜕
𝜕𝑡 with −𝑖𝜔 we have the

6The fields do not depend on 𝑦 due to the fact that the structure is uniform and extends to infinity
in the 𝑦 direction.
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equations coupling electromagnetic fields,

𝜕𝐸𝑧
𝜕𝑦 − 𝜕𝐸𝑦

𝜕𝑧 = 𝑖𝜔𝜇0𝐻𝑥 (2.41a)

𝜕𝐸𝑥
𝜕𝑧 − 𝜕𝐸𝑧

𝜕𝑥 = 𝑖𝜔𝜇0𝐻𝑦 (2.41b)
𝜕𝐸𝑦
𝜕𝑥 − 𝜕𝐸𝑥

𝜕𝑦 = 𝑖𝜔𝜇0𝐻𝑧 (2.41c)

𝜕𝐻𝑧
𝜕𝑦 − 𝜕𝐻𝑦

𝜕𝑧 = −𝑖𝜔𝜖0𝜖𝐸𝑥 (2.41d)

𝜕𝐻𝑥
𝜕𝑧 − 𝜕𝐻𝑧

𝜕𝑥 = −𝑖𝜔𝜖0𝜖𝐸𝑦 (2.41e)
𝜕𝐻𝑦
𝜕𝑥 − 𝜕𝐻𝑥

𝜕𝑦 = −𝑖𝜔𝜖0𝜖𝐸𝑧 (2.41f)

Equation 2.41 can be simplified further with the replacement of 𝜕
𝜕𝑥 → 𝑖𝛽 , 𝜕

𝜕𝑦 → 0,
exploiting propagation in the x-directon and the homogeneity in y-direction, respec-

tively.

𝜕𝐸𝑦
𝜕𝑧 = −𝑖𝜔𝜇0𝐻𝑥 (2.42a)

𝜕𝐸𝑥
𝜕𝑧 − 𝑖𝛽𝐸𝑧 = 𝑖𝜔𝜇0𝐻𝑦 (2.42b)

𝑖𝛽𝐸𝑦 = 𝑖𝜔𝜇0𝐻𝑧 (2.42c)
𝜕𝐻𝑦
𝜕𝑧 = 𝑖𝜔𝜖0𝜖𝐸𝑥 (2.42d)

𝜕𝐻𝑥
𝜕𝑧 − 𝑖𝛽𝐻𝑧 = −𝑖𝜔𝜖0𝜖𝐸𝑦 (2.42e)

𝑖𝛽𝐻𝑦 = −𝑖𝜔𝜖0𝜖𝐸𝑧 (2.42f)

These equations can be further divided into two self-consistent groups with different

polarization properties. Combining the first, the third and the fifth equations we only

have 𝐻𝑥 , 𝐻𝑧 and 𝐸𝑦 as nonzero and the modes consisting of these fields are called

TE modes7. Combining the remaining equations we only have 𝐸𝑥 , 𝐸𝑧 and 𝐻𝑦 which

constitute the TM modes.

For TE modes Equation 2.42 reduces to the following two equations with 𝐸𝑦 as the

7They are also called s modes, from German ”senkrecht” meaning perpendicular, by the same token
TM modes are also called p modes, again from German ”parallel”.
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driving term.

𝐻𝑥 = 𝑖 1
𝜔𝜇0

𝜕𝐸𝑦
𝜕𝑧 (2.43a)

𝐻𝑧 =
𝛽

𝜔𝜇0
𝐸𝑦 (2.43b)

The governing wave equation is

𝜕2𝐸𝑦
𝜕𝑧2 + (𝑘20𝜖 − 𝛽2)𝐸𝑦 = 0 (2.44)

Whereas for TM modes Equation 2.42 reduces to the following two equations with 𝐻𝑦
as the driving term.

𝐸𝑥 = −𝑖 1
𝜔𝜖0𝜖

𝜕𝐻𝑦
𝜕𝑧 (2.45a)

𝐸𝑧 = − 𝛽
𝜔𝜖0𝜖

𝐻𝑦 (2.45b)

The governing TM wave equation is

𝜕2𝐻𝑦
𝜕𝑧2 + (𝑘20𝜖 − 𝛽2)𝐻𝑦 = 0 (2.46)

In order to investigate the propagation of SPPs on interfaces we focus on the sim-

plest setup possible consisting of two semi-infinite slabs on top of each other as de-

picted in Figure 2.1, a single interface between a dielectric (insulator) for 𝑧 > 0 and

metal (conductor) for 𝑧 < 0. Our aim is to look for propagating waves along the inter-

face that decay exponentially in the direction perpendicular to it.

x

z Dielectric

Metal

𝜖2

𝜖1

Figure 2.1: Geometry of the the dielectric-metal interface used in the derivations
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We focus first on TE modes and analyze their possibility, we employ the notation

that 𝛽 = 𝑘𝑥 , 𝑘1 ≜ 𝑘𝑧,1 and 𝑘2 ≜ 𝑘𝑧,2. Then the equations for 𝑧 > 0 are

𝐸𝑦 (𝑧) = 𝐵𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧 (2.47a)

𝐻𝑥 (𝑧) = −𝑖𝐵 1
𝜔𝜇0

𝑘2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧 (2.47b)

𝐻𝑧(𝑧) = 𝐵 𝛽
𝜔𝜇0

𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧 (2.47c)

whereas for 𝑧 < 0 they are

𝐸𝑦 (𝑧) = 𝐴𝑒𝑖𝛽𝑥𝑒𝑘1𝑧 (2.48a)

𝐻𝑥 (𝑧) = 𝑖𝐴 1
𝜔𝜇0

𝑘1𝑒𝑖𝛽𝑥𝑒𝑘1𝑠𝑧 (2.48b)

𝐻𝑧(𝑧) = 𝐴 𝛽
𝜔𝜇0

𝑒𝑖𝛽𝑥𝑒𝑘1𝑧 (2.48c)

Referring back to continuity equations for electromagnetic fields Equation 2.11, 𝐸𝑦 and
𝐻𝑥 must be continuous at the interface. It immediately follows 𝐴 = 𝐵 and hence

𝐴(𝑘1 + 𝑘2) = 0 (2.49)

In order for the waves to decay exponentially away from the surface we need to have

ℜ(𝑘1) > 0 and ℜ(𝑘2) > 0, so Equation 2.49 implies 𝐴 = 𝐵 = 0. This concludes that

surface plasmon polaritons do not exist for TE polarization.

Lastly we focus on TM modes and utilize the same notation as described before.

The equations for the upper half with positive z are

𝐻𝑦 (𝑧) = 𝐵𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧 (2.50a)

𝐸𝑥 (𝑧) = 𝑖𝐵 1
𝜔𝜖0𝜖2

𝑘2𝑒−𝑘2𝑧 (2.50b)

𝐸𝑧(𝑧) = −𝐵 𝛽
𝜔𝜖0𝜖2

𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧 (2.50c)

and for negative z we have

𝐻𝑦 (𝑧) = 𝐴𝑒𝑖𝛽𝑥𝑒𝑘1𝑧 (2.51a)

𝐸𝑥 (𝑧) = 𝑖𝐴 1
𝜔𝜖0𝜖2

𝑘1𝑒𝑘1𝑧 (2.51b)

𝐸𝑧(𝑧) = −𝐴 𝛽
𝜔𝜖0𝜖2

𝑒𝑖𝛽𝑥𝑒𝑘1𝑧 (2.51c)
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Making use of the continuity of 𝐻𝑦 and 𝐸𝑥 we have the following relations

𝐴 = 𝐵 (2.52)
𝑘2
𝑘1

= −𝜖2𝜖1
(2.53)

Since both 𝑘1 and 𝑘2 are positive in the convention used, in order to have a electro-

magnetic wave confined to the surface the real parts of the permittivities 𝜖 must have

opposite signs. That isℜ(𝜖1) < 0 because of the fact that the dielectric has a positive 𝜖2.
On top of these 𝐻𝑦 has to satify the TM wave equation Equation 2.46 derived before

which imposes

𝑘21 = 𝛽2 − 𝑘20𝜖1 (2.54a)

𝑘22 = 𝛽2 − 𝑘20𝜖2 (2.54b)

Combining Equation 2.52 with Equation 2.54 we arrive at the SPP dispersion relation

which is plotted in Figure 2.2.

𝛽 = 𝑘0√
𝜖1𝜖2
𝜖1 + 𝜖2

(2.55)

Figure 2.2: SPP dispersion
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SINGLE SCATTERERS

In this study we are going to focus on three different types of single scatterers; the

1D grating by Iqbal T. and Afsheen S. [33], the rectangular slit by Tanemura T. et al.

[2, 24], and the Δ-antenna by Bai B. et al. [14, 34, 35]. In order to make these designs

compatible with our optical setup and fabrication procedure some modifications are

made, which are discussed in the following sections. The simulations were done in

Lumerical FDTD Solutions commercial package [36].

3.1 Single Grating

We start with the simplest case that is a single infinite perforation on the gold film

surface. There are various grating designs some of which are not compatible with our

fabrication process such as the ones by Chen C. and Berini P. [37, 38] due to the dif-

ferent substrate used, namely Si3N4, and the presence of the gold layer underneath

the grating. It is not possible to manufacture structures with two layers of metal us-

ing standard e-beam lithography with a single resist layer. Therefore we employ the

design from Iqbal T. [33] which is compatible with our manufacturing processes. We

start by simulating a single infinite perforation of a finite width on the metal film to

characterize a single scatterer. The width of this infinite perforation is scanned from

125 nm to 350 nm in 25 nm increments while keeping all the other simulation param-

eters constant.

In this case it is not logical to characterize the single infinite slit with the angular

distribution of the electric field norm squared/phase of 𝐸𝑧 as the wave vector of the

scattered light is always perpendicular to the infinite side of the groove. Therefore the

plots of the electric field on the surface, 20 nm above the surface and inside the infinite

slit are provided.
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(a) The grating used in simulation (b) |𝐸|2 inside the grating

(c) |𝐸|2 on the metal-air interface (d) |𝐸|2 20 nm above the metal-air interface

Figure 3.1: Grating Design, Width = 300 nm 𝜆 = 1550 nm

In Figure 3.1a the red arrow indicates the polarization direction of the incident

light from the substrate side. We observe that the SPPs excited on both sides of the

infinite slit are identical and their field profile do not vary over the x-axis (parallel to

the infine side of the slit). The black arrows on Figure 3.1c indicate the direction of

SPP propagation on the metal-air interface. The theoretical wavelength of the SPPs

defined from Equation 2.55 as 𝜆𝑆𝑃𝑃 = 2𝜋/ℜ(𝛽) is 1543 nm, whereas the calculated

SPP wavelength from the simulation data is 1536 nm. The wavelength is calculated

by measuring the distance between the crest-trough of the wave and multiplying by

2. The imaginary part of the propagation constant ℑ(𝛽) is 1.38 × 104; this is an order

of magnitude larger compared to the theoretical value of 1.77 × 103. This discrepancy

is caused since SPPs are not the only waves excited on the interface and inspecting
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Figure 3.2 with a logarithmic y-axis shows that waves with different power decay laws

are excited.

Figure 3.2: |𝐸𝑧 | along propagation direction

3.2 Rectangular Nanoslit

E0

wb

h

𝑥
𝑦

Figure 3.3: Nanoslit top down view

Next we move on to the original rect-

angular nanoslit design perforated on

gold film by Tanemura T. et al. features

nanoslits of width 120 nm and height 520

nm [2]. These nanoslits which are per-

forated on a gold film of 75 nm thick-

ness are illuminated from the air side and

the excited SPPs propagate on the metal-

dielectric interface. Our design differs

from this in that we use a thicker gold

layer, 115nm, and the nanoslits are illuminated from the substrate side. Polarization

of the normally incident field is in the x-direction as indicated on Figure 3.3 with the

red double-sided arrow.The nanoslits are expected to have a symmetric radiation pat-
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tern with respect to y-axis. After the field intensity is normalized with the largest

value in the dataset it is scaled by 𝐶/h in order to isolate the excited field magnitude

per unit width along the height of the nanoslit. Here h is the height of the nanoslit

and 𝐶 is some constant. To characterize the angular radiation pattern of the nanoslit

the square of the magnitude of the electric field and the phase of the z component of

the electric field (𝐸𝑧) is examined 20 nm above the metal-air interface.

In Figure 3.4b the black arrow indicates the direction of decreasing height for the

nanoslits. For Figure 3.4a such a pattern is not recognizable as the trend changes di-

rection at the nanoslit height of 625 nm.

(a) |𝐸|2 on a circle of radius 2 μm (b) Phase of 𝐸𝑧 on a circle of radius 2 μm

(c) Mode from Lumerical FDTD Solutions (d) |𝐸|2 evaluated at the middle of the metal film

Figure 3.4: Nanoslit Design, Width = 525 nm 𝜆 = 1550 nm
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We also performed fitting using the built-in griddedInterpolant function of Matlab

for linear interpolation [39]. These fits are utilized in Chapter 6 to determine the lo-

cations of Δ-antennas on the wavelength demultiplexer with the iterative algorithm

presented in Chapter 5. The interpolation is done on a circle with the Δ-antenna in

the center, and the fit is done by assuming that the SPP field is proportional to the

following expression:

𝐸 ∝ 𝑓 (𝜃)
√|rField − rSource|

exp[𝑖𝑘SPP(rField − rSource)] (3.1)

In the above expression the attenuation and oscillation of SPP waves are contained in

the exponential term and the denominator serves for normalization such that if there

were no attenuation the optical energy flux would be the same for circles of varying

radii with their center on the scatterer. The 𝑓 (𝜃) term represents the dependence of

the scattered field on the geometry of the scattter and for the nanoslit which is ap-

proximated to have a point dipole radiation pattern 𝑓 (𝜃) = cos(𝜃) as in the original

expression by Steele et al. [40]. The geometry of the setup used for the fit is illustrated

in Figure 3.5; here 𝑅1 = 2 μm and 𝑅2 = 4 μm.

𝑦
𝑥

𝑓 (𝜃)

𝑅1𝑅2
𝜃

𝑓 (𝜃)√
𝑅1
𝑅2 exp[𝑖𝑘SPP(𝑅2 − 𝑅1)]

Figure 3.5: Illustration of the fitting procedure and coordinates for nanoslit
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The fit is performed with the following steps:

1. Simulation is performed on a big domain of 10 μm × 10 μm in xy plane

2. Data is exported to Matlab for post-processing

3. An interpolation is done to have the data on a circle of radius 𝑅1

4. Assuming only SPPs are excited 𝐸𝑅1 ∝ 𝑓 (𝜃)
√𝑅1

exp(𝑖𝑘SPP𝑅1)

5. By the same token 𝐸𝑅2 ∝ 𝑓 (𝜃)
√𝑅2

exp(𝑖𝑘SPP𝑅2)

6. So 𝐸𝑅2 = √
𝑅1
𝑅2 exp[𝑖𝑘SPP(𝑅2 − 𝑅1)]

The obtained fits are compared with the interpolation from the simulation data in Fig-

ure 3.6. The fits are acceptable; however, there are some differences due to the excita-

tion of quasicylindrical waves (quasi-CW) alongwith SPPs. The excitation of quasi-CW

is dominant for 𝜆 > 1000 nm with noble metals [41].

(a) The real part of the fit over the circle (b) The imaginary part of the fit over the circle

Figure 3.6: Comparison of fit with interpolation for nanoslit

In our algorithmwe selected a nanoslit of height 500 nm and width of 100 nm since

a nanoslit of this dimension is resonant at a free-space wavelength of 1550 nm. In order

to determine the resonant height we scanned the height of the slit while keeping its

width constant, and measured the forward scattering cross section by normalizing the
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transmitted power in the forward direction with the intensity of the source. Later

in order to get a dimensionless quantity we further normalized this value with the

geometric cross section of the nanoslit. Figure 3.7 illustrates the obtained results.

Figure 3.7: Forward scattering of nanoslit

3.3 Δ-antenna

h

wb

𝑦
𝑥

E0

Figure 3.8: Δ-antenna top down view

The original Δ-antenna design [14] is

an isosceles triangle hole perforated on

an optically thick (200 nm) gold film

on fused silica substrate. The excita-

tion beam is normally incident on the Δ-
antenna with polarization perpendicular

to the base of the triangle (Figure 3.8).

The antenna is back illuminated (from

the substrate side) and the vacuum wave-

length of the illumination light is 𝜆0 =
633 nm. The dielectric constant of gold is 𝜖𝑚 = −11.10 + 1.29𝑖, and the dielectric con-

stant of air is 𝜖𝑑 = 1 at the wavelength of interest.

This design served as a benchmark tool for our simulations and subsequent designs.

In order to characterize angular radiation pattern of Δ-antennas we performed the

same analysis in the previous section. It should also be noted that the field intensities
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are normalized with respect to the maximum value and multiplied by 360 nm/𝑤𝑏1 in

order to isolate the excited field by unit width of the Δ-antenna.
In order to compare our results with those in the original article by You B. [14] we

evaluated the electric field 20 nm above the gold-air interface on a circle of radius 2 μm.

The antennas were of the same dimension as in the article, namely, 300 nm in width

and 505 nm in height.

(a) |𝐸|2 on a circle of radius 2 μm (b) Phase of 𝐸𝑧 on a circle of radius 2 μm

(c) TM mode from Lumerical FDTD Solutions (d) |𝐸|2 evaluated at the middle of the metal film

Figure 3.9: Δ-antenna original design with 𝑤𝑏 = 300 nm and ℎ = 505 nm

In Figure 3.9a and Figure 3.9b the base width of the Δ-antenna is scanned from

240 nm to 360 nm in 10 nm increments. The black arrows on the figures indicate the

direction of increasing base width.

In our laboratory we have an optical setup with a Fianium SC450 supercontinuum

laser source and an AOTF with two NIR channels: NIR1 in the range 650-1100 nm and

1𝑤𝑏 is the base width of the isosceles triangle.
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NIR2 to in the range 1100-2200 nm. Since we work mostly with the NIR2 channel at

1550 nm, we need to employ a Δ-antenna design with large dimensions.

The same Δ-antenna design with different dimensions was utilized before twice.

Firstly, in 2009 in a blazing gratingworking at normal incidencewith back illumination

at 1530 nm [35]. To accommodate for the increased source wavelength the basewidth

and the height of the Δ-antennas were scaled up to 960 nm and 1360 nm, respectively.

Secondly, in 2014 a binary area-coded nanohole array is formedwithΔ-antennaswhich
have ℎ = 1057 nm and 𝑤𝑏 = 570 nm. This time the source laser operated at 1064 nm

[34].

(a) |𝐸|2 on a circle of radius 2 μm (b) Phase of 𝐸𝑧 on a circle of radius 2 μm

(c) Mode solution from Lumerical FDTD Solutions (d) |𝐸|2 evaluated at the middle of the metal film

Figure 3.10: Δ-antenna revised design for NIR
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In Figure 3.10a and Figure 3.10b the black arrows indicate the direction of increas-

ing base width. 𝑤𝑏 is scanned from 550 nm to 1000 nm in 50 nm increments while

keeping the height constant at 1360 nm. In Figure 3.10c and Figure 3.10d the magni-

tude of the modal electric field and electric field in the middle of the film are illustrated,

respectively. Since the largest base width is 1000 nm we multiply with 1000 nm/𝑤𝑏 af-

ter the normalization is done. We perform the same analyses of evaluation of the

electric field norm squared and the phase of the 𝐸𝑧 on a 2 μm radius circle. At 1550 nm

the revised design retains its unidirectional scattering capability.

The unidirectionality of the Δ-antenna depends on the base width, height of the an-
tenna and the wavelength of the incident light. Therefore there is a trade-off between

the ratio of forward scattered SPPs to backward scattered SPPs and the total scattered

power. In Figure 3.11 the depence of this ratio on height is illustrated for a Δ-antenna
of basewidth 500 nm.

Figure 3.11: SPP amplitude in forward and backward directions (above); and their

ratio (below) at 500 nm basewidth
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Figure 3.12: SPP amplitude in forward and backward directions (above); and their

ratio (below) at 900 nm basewidth

The dependence of the intensity of the forward propagating and backward propa-

gating SPPs is different for a Δ-antenna with a basewidth of 900 nm, yet the trend is

similar in the sense that the higher the height is the more the SPPs are excited in the

forward direction (Figure 3.12).

Figure 3.13: Forward scattering of Δ-antenna
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Before performing the fits we further perform a sweep over the height of the Δ-
antenna to find the height at which the most forward scattering occurs just like we

did for the nanoslits. We have chosen a Δ-antenna design with 𝑤𝑏 = 900 nm and

ℎ = 800 nm (Figure 3.13). We had to make compromises on the unidirectionality of the

Δ-antenna as our primary concern is to concentrate the maximum optical power to the

focal point. We were not able to determine the dimension the Δ-antenna is resonant
at an incident wavelength of 𝜆 = 1550 nm after doing simulations keeping the ℎ fixed

while sweeping over 𝑤𝑏 and keeping 𝑤𝑏 fixed while sweeping over ℎ.
The fit is performed by interpolating the data from a single Δ-antenna on a circle

of radius 2 μm and extracting the angular dependence of the scattering pattern from

there. At the point interest this dependence is scaled according to the distance and its

phase is calculated taking 𝑘SPP into account. The orientation of the Δ-antenna in this

fit is given in Figure 3.14.

𝑦
𝑥

𝑓 (𝜃)

𝑅1𝑅2
𝜃

𝑓 (𝜃)√
𝑅1
𝑅2 exp[𝑖𝑘SPP(𝑅2 − 𝑅1)]

Figure 3.14: Illustration of the fitting procedure and coordinates for Δ-antenna
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(a) The real part of the fit over the circle (b) The imaginary part of the fit over the circle

Figure 3.15: Δ-antenna (𝑤𝑏 = 500 nm, ℎ = 800 nm) comparison of fit with interpola-

tion

(a) The real part of the fit over the circle (b) The imaginary part of the fit over the circle

Figure 3.16: Δ-antenna (𝑤𝑏 = 900 nm, ℎ = 800 nm) comparison of fit with interpola-

tion

As seen in Figure 3.15 and in Figure 3.16 the fits are acceptable, yet they are not

perfect. The fits for both the nanoslits and the Δ-antennas are not exact due to the

presence of quasi-cylindrical waves (quasi-CW) which are excited together with SPPs

as proposed by Haiato Liu and Philippe Lalanne [41] and Norton waves which are

weak in noble metals compared to the preceding two waves [42]. The quasi-CW are
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attenuated much faster than SPPs over the entire electromagnetic spectrum for noble

metals and these waves convert into each other [43].

In the following table the transmitted optical power as a fraction of total input

optical power is given. The cross-section is taken to be oriented perpendicular to the

direction in which the most scattering occurs and is situated 750 nm away in this

direction from the scatterer center in each case.

Δ-antenna Rectangular Nanoslit 1D single grating

Transmission % 0.63 0.08 0.61

Width 950 nm 100 nm 300 nm

Height 1360 nm 500 nm ∞

Table 3.1: Transmission percentage as a ratio of input power at 𝜆 = 1550 nm



Chapter 4

SPP BEAM LAUNCHER

The main aim of this study is to couple normally incident light to SPPs and then

into stripe waveguide modes. In doing so it is of our best interest to couple the maxi-

mum amount of energy possible from the incident light into propagating SPPs. In this

chapter we try to realize this by the use of a SPP beam launcher. SPP beam launchers

excite a given SPP mode with a well defined amplitude and phase.

4.1 Reproduction of Hermite-Gauss SPP Beam

This section is about launching specific SPP modes with a well defined amplitude

and phase. We start by testing our implementation of the Hermite-Gauss SPP beam

launcher originally proposed by You O. [14]. After verification of the algorithm our

objective is to launch an SPP beam having the same amplitude and phase profile with

the fundamental mode of a stripe waveguide to couple into this mode.

We analyze the generation of a Hermite-Gauss SPP beam by exploiting the unidi-

rectionality of individual Δ-antennas in the same manner as done by You O. [14]; the

objective here is to compare our simulation technique and test its robustness.

The parameters are the same as used in Section 3.3. The analytical expression for

the z-component of the electric field of a Hermite-Gauss SPP beam is as follows1:

𝐸𝑧,𝑑 (𝑥, 𝑦, 𝑧) = 𝐴𝑙√
𝑊0
𝑊(𝑦)𝐻𝑙 [

√2𝑥
𝑊 (𝑦)] exp [

−𝑥2
𝑊 2(𝑦) − 𝑘𝑖𝑚𝑎𝑔(𝑦 − 𝑦0)]

exp [𝑖𝑘𝑟𝑒𝑎𝑙 (𝑦 − 𝑦0) + 𝑖𝑘𝑟𝑒𝑎𝑙
𝑥2

2𝑅(𝑦) + 𝑖 (
1
2 + 𝑙) 𝜙] exp(−𝜅𝑧)

(4.1)

1It should be noted that z-direction is the direction perpendicular to the metal-dielectric interface
and the subscript 𝑑 refers to the field inside the dielectric
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The definitions of 𝜅, 𝑊(𝑦), 𝑅(𝑦) and 𝜙(𝑦) are as follows

𝜅 = √𝑘2𝑆𝑃𝑃 − 𝜖𝑑𝑘20 (4.2)

𝑊 2(𝑦) = 𝑊 20 {1 + [
2(𝑦 − 𝑦0)
𝑘𝑟𝑒𝑎𝑙𝑊 20 ]

2

} (4.3)

𝑅(𝑦) = (𝑦 − 𝑦0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + [

𝑘𝑟𝑒𝑎𝑙𝑊 20
2(𝑦 − 𝑦0)]

2⎫⎮⎮⎮⎬⎮⎮⎮⎭
(4.4)

𝜙(𝑦) = − arctan [
2(𝑦 − 𝑦0)
𝑘𝑟𝑒𝑎𝑙𝑊 20 ] (4.5)

Here 𝜅 is the field attenuation constant in the direction normal to the metal-dielectric

interface, 𝑊(𝑦) is the beam width, R(y) is the curvature of the beam, 𝜙(𝑦) is the ad-

ditional phase, 𝐴𝑙 is the amplitude, 𝑦0 is the position of the beam waist in y, 𝑘 is the

wave vector of the SPP and 𝐻𝑙 is the Hermite polynomial of order 𝑙. It should be noted
that since we deal with second order Hermite-Gauss we are concerned only with the

case in which 𝑙 = 2.
Ignoring the constant coefficients the Equation 4.2 can be rewritten as follows:

|𝐸𝑧 | exp(𝑖Φ) = 𝐻2 [
√2𝑥
𝑊 (𝑦)] exp [

−𝑥2
𝑊 2(𝑦)] exp [𝑖𝑘𝑟𝑒𝑎𝑙

𝑥2
2𝑅(𝑦)] (4.6)

Conforming with the procedure in the article we take 𝑦0 = 15 μm and perform the

following steps to populate the Δ-antenna array.

1. The amplitude and phase of the 𝐸𝑧 is calculated at the exit line 𝑦 = 0 and the

amplitude is normalized to 1.

2. Determine how many rows of antennas are needed to reproduce the output

beam, which is denoted by N. As in the article we select this to be 𝑁 = 7.

3. The amplitude profile of the desired beam is discretized as 𝛿|𝐸𝑧 | = |𝐸𝑧 |𝑚𝑎𝑥 /𝑁 by

drawing horizontal lines intersecting the amplitude profile as in Figure 4.1a.

4. Decide on the number of rows of Δ-antennas needed by looking at the y-

intercept of the intersection point. For example if it is 2/7 in our case, it means

that 2 rows of Δ-antennas are required.
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5. Determine the base widths of the antennas by selecting an appropriate number

of delta antennas to fit into the line segment(s) that is(are) truncated by the am-

plitude profile on both sides.

6. Fine tune the y positions of the antennas in order to reproduce the required phase

difference after discretization of the phase profile by vertical lines this time as in

Figure 4.1b. The individual antennas in columns are moved by Δ𝑦 = Φ/𝑘𝑆𝑃𝑃,𝑟𝑒𝑎𝑙 .

(a) Discretization of amplitude profile in Matlab (b) Discretization of phase profile in Matlab

Figure 4.1: Discretization of the 2nd order Hermite-Gauss SPP beam

(a) Positions of the antennas in Lumerical (b) Magnitude of 𝐸𝑧 on the surface

Figure 4.2: Lumerical FDTD Solutions setup & results
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After these discretization are made the antennas are placed in Lumerical FDTD

Solutions as in Figure 4.2a, and a simulation is done. The results conform with those

of the article and they are given in the following figures.

(a) |𝐸𝑧 | from FDTD and analytical results at 𝑦 = 15 μm (b) arg(𝐸𝑧) from FDTD and analytical results at 𝑦 = 10 μm

Figure 4.3: Results some distance away

In Figure 4.2b the magnitude of 𝐸𝑧 on the surface of the device is shown which is

similar to the same plot in the article. The comparison between the analytical expres-

sion and the numerical result for the |𝐸𝑧 | and phase of 𝐸𝑧 is provided in Figure 4.3a and

Figure 4.3b, respectively.
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4.2 Stripe Waveguide Coupling

We begin our analysis by finding the amplitude and phase profile of the electric field

in the z-direction for the fundamental mode of a stripe waveguide of 1 μm.

Figure 4.4: |𝐸𝑧 | and arg(𝐸𝑧) from Comsol

In Figure 4.4 the amplitude and phase of the normal (z-component) electric field are

shown together. From the plot it is evident that the amplitude of the normal electric

field changes rapidly, which is a problem for the SPP beam launcher scheme proposed

in the previous subsection. This is due to the fact that the finest feature in the amplitude

or phase profile of the desired SPP beam it can cope with is a slow variation on the

order of the basewidth of the individual Δ-antennas (≈ 300 nm). Note that the original

design features an SPP beam whose profile spans 12 μm.

We decided to try it anyways and proceeded with discretizing the amplitude and

phase of the z-component of the electric field with the method outlined in the previ-

ous subsection, but we were not able to discretize the electric field profile since the

basewidth of the antennas were large compared to the fast decay of the amplitude. We

could not afford shortening the basewidth much below 300 nm as the performance of

the antennas will be severely comprimised.

Then we decided to devise an alternative approach in which the fundamental mode

of the stripe waveguide is launched to propagate towards the gold film and the z-

component of the electric field is examined on the gold film 1 μm away from the start



Chapter 4: SPP beam launcher 37

of the stripe waveguide.

(a) Discretization of amplitude profile in Matlab (b) Discretization of phase profile in Matlab

Figure 4.5: Discretization of the 𝐸𝑧 field after modal excitation

In Figure 4.5a and Figure 4.5b the discretization used for the amplitude and phase

of the z-component of the electric field is shown, respectively. Our aim is to obtain a

similar amplitude and phase profile on the same line after placing the Δ-antenna array
and exciting SPPs with light normally shone from the air side.

(a) |𝐸𝑧 | on the exit line (b) Phase of 𝐸𝑧 on the exit line

Figure 4.6: 𝐸𝑧 on the exit line

In Figure 4.6 the amplitude and phase of the z-component of the electric field at

the desired line situated 1 μm before the waveguide is shown. Comparing these with
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Figure 4.5 it is obvious that this approach has failed. This is due to the fact that we

decreased the basewidth of the antennas too much to have enough antennas to char-

acterize the variations in the amplitude and phase profile. Thus the fraction of light

scattered in the forward direction wasminute and the launched SPP beam also suffered

from diffraction before reaching the stripe waveguide.

Since this approach did not yield the coupling into the stripe waveguides at the end

of the gold film we decided to utilize a modified version a wavelength demultiplexer

design to realize our objective.
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SCALAR WAVE THEORY

5.1 Antenna Arrays

To produce a desired radiation pattern many antennas may be placed together and col-

lectively this structure is referred to as an array antenna. Sometimes it is also desirable

to scan the radiation pattern through space and there are two means to achieve this;

mechanically changing the positions of individual radiating elements or modulating

the current fed to the individual radiating elements. The possibility to electronically

scan the beam pattern through space is a huge advantage of an array antenna over

a single large antenna. Furthermore, mechanical problems associated with support-

ing/moving a single large antenna are alleviated with such a design. If the pattern

scanning is realized by modulating the currents the array is called a phased array. To

illustrate the theory in this section we will focus on linear arrays and the discussion

follows from the textbook by W.L. Stutzman and G.A. Thiele [44].

5.1.1 Linear Arrays

It is assumed that each scatterer in the array is an isotropic point source and the array

antenna is reciprocal under transmission or reception. Mathematically the field of an

isotropic source is directly proportional to:

𝐸0 ∝ 𝑒𝑖𝛽𝑟
4𝜋𝑟 (5.1)

With isotropic source assumption in place the resulting radiation pattern is known

as the array factor. In order to describe the radiation pattern of an array antenna

fully we also need the element patterns which are the real radiation patterns of the

constituent scatterer elements of the array antenna. The total radiation pattern then

can be obtained by the multiplication of the element pattern with the array factor.
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E0 E0
d=𝜆/2

z
𝜃𝑑 co

s 𝜃

Figure 5.1: Two point sources of the same phase

For a demonstration of the calculation of the array factor a linear array consisting of

two point sources will be used as illustrated in Figure 5.1. These sources have identical

currents (equal in amplitude and phase), and they are spaced half of a wavelength apart.

In order to calculate the radiation pattern a far field point that makes an angle of 𝜃 with
the lines connecting the sources are selected. The path length difference between the

two sources at this point is 𝑑 cos(𝜃). The array factor then follows:

AF = 1𝑒𝑖𝛽𝑑 cos(𝜃) + 1 (5.2)

Here 𝑑 is the distance between the sources and equal to 𝜆/2 and 𝛽 = 2𝜋/𝜆. Substituting
these into Equation 5.2 and normalizing the array factor to have a maximum value of

one yields,

AF = 𝑒𝑖𝛽(𝑑/2) cos(𝜃)(𝑒𝑖𝛽(𝑑/2) cos(𝜃) + 𝑒−𝑖𝛽(𝑑/2) cos(𝜃)) (5.3)

= 2𝑒𝑖𝛽(𝑑/2) cos(𝜃) cos(𝛽(𝑑/2) cos(𝜃)) (5.4)

= cos(𝜋 cos(𝜃)
2 ) (5.5)

This array factor agrees well with intuition as it is expected to have zero amplitude on

the line connecting the sources (𝜃 = 0), since they are driven by the same current and

spaced half of a wavelength apart. The maximum amplitude of the pattern is realized

at an angle of 𝜃 = 𝜋/2 which is perpendicular to the line connecting the sources.

If the elemental antennas in an array antenna have the same radiation pattern and

oriented in the same direction then the complete radiation pattern can be obtained by

multiplication of the elemental pattern with the array factor.

5.1.2 Coupler Design

In this section a wavelength demultiplexer nanoslit array design which focuses dif-

ferent wavelength SPPs to predesignated different spatial positions will be discussed
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based on the 2011 paper by T. Tanemura et al [2].

In this design the slits have a length of 500 nm andwidth of 100 nm, and the incident

plane wave is incident on the slit array from air side. The incident beam is polarized

along the the short direction each slit (the orientation of each slit is the same). The

excited SPPs propagate on the bottommetal-silica interface. At the design wavelength

of 850 nm each slit act as a point dipole radiator. The reflections and scattering of SPPs

by slits are not taken into account, since the reflection from thin slits is found to be

negligible experimentally [45]. In this model each slit is regarded as a point dipole

source of SPPs and the phase change of SPPs upon travelling through the slits is also

minimal since the slit widths are smaller than half of the SPP wavelength [40]. It is

possible to devise an iterative algorithm which relocates the slits to focus different

wavelengths at different spots on a particular line.

Slit 𝑛

x

y

r𝑆𝑛

𝐸𝑛,𝑚

𝜃𝑛,𝑚

r𝐹𝑚
Focus 𝑚
for 𝜆𝑚E0

Figure 5.2: Labelling of slits and focal points

Employing the same notation as in the article by Tanemura et al. we have 𝑁 slits

whose positions are given by the position vector r𝑆𝑛 where 𝑛 runs over the slits. The

focus points are denoted by rF𝑚 where m runs over the wavelengths(𝜆m) to be focused,
for an illustration see Figure 5.2. For points far away from the slit -|rF𝑚−rS𝑛| ≫ 𝜆𝑆𝑃𝑃 - the
radiation is roughly proportional to cos(𝜃𝑛,𝑚)/|rF𝑚 − rS𝑛|. It follows that the amplitude of

the electric field at a focal position is complex and can be evaluated with the following

sum:

𝐸𝑡𝑜𝑡𝑎𝑙𝑚 = ∑
𝑛

𝐸𝑛,𝑚 (5.6)



42 Chapter 5: Scalar Wave Theory

The individual 𝐸𝑛,𝑚s represent the effect of 𝑛𝑡ℎ slit on the 𝑚𝑡ℎ focus point. These

coefficients can be calculated as follows:

𝐸𝑛,𝑚 = 𝐴𝑛,𝑚𝑇𝑛,𝑚
cos(𝜃𝑛,𝑚)

√|rF𝑚 − rS𝑛|
exp[𝑖𝑘SPP𝑚 (rF𝑚 − rS𝑛)] (5.7)

where 𝑘SPP𝑚 is the wave vector of the SPP on the metal-silica interface, 𝐴𝑛,𝑚 is the am-

plitude at the slit location and wavelength (hence two indices) and 𝑇𝑛,𝑚 is the transmis-

sion coefficient. As aforementioned the transmission is not prominent so T is taken to

be unity for all slits and wavelengths in our work in contrast with the original work

which takes it to be 𝑇𝑛,𝑚 = 𝑡𝑝𝑛𝑚 , where the lower case 𝑡𝑚 represent the transmission

over a single slit at normal angle at a given wavelength and 𝑝𝑛 is the number of slit

columns between the slit and the line on which the focal points lie. In our work 𝐴𝑛,𝑚
represent the effect of having an input beam with Gaussian spatial dependence. The

dielectric constants are taken from the experimental Johnson and Cristy data for gold

[46].

In order to calculate the positions of the slits on the surface of the metal an iterative

algorithm really similar to the one utilized by J. Backlund et al. for focusing light into

any number of desired spots within a waveguide via incoupling waveguide holograms

is used [47]. The algorithm functions as follows:

1. The total electric field 𝐸𝑚 is calculated for each focus position rF𝑚 at 𝜆𝑚 using

Equation 5.7 and Equation 5.6.

2. The electromagnetic field scattered by each slit, that is 𝐸𝑛,𝑚, is compared with

the total electric field 𝐸𝑡𝑜𝑡𝑎𝑙𝑚 for every focus point rF𝑚.

3. The phase mismatch between electric field generated by a single slit and total

electric field scattered by the slit array is expressed mathematically as:

arg(𝐸𝑡𝑜𝑡𝑎𝑙𝑚 𝐸∗𝑛,𝑚/[|𝐸𝑡𝑜𝑡𝑎𝑙𝑚 ||𝐸𝑛,𝑚|]) (5.8)

The objective is to minimize this difference, however there is the constraint that

we focus several wavelengths to different positions at once.
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4. Therefore an average phase mismatch factor is calculated which is given by

𝛿𝑛 ≡ arg [∑𝑚
𝑊𝑚

𝐸𝑡𝑜𝑡𝑎𝑙𝑚 𝐸∗𝑛,𝑚
|𝐸𝑡𝑜𝑡𝑎𝑙𝑚 ||𝐸𝑛,𝑚| ]

(5.9)

5. Then the slit 𝑛 is relocated only in the x direction to decrease |𝛿𝑛| as shown in

Figure 5.3. The new position of the slit is mathematically calculated from the

following equation:

|rS,new𝑛 − rF̄| − |rS,old𝑛 − rF̄| = 𝛿𝑛
𝑘SPP

(5.10)

6. These steps are iterated until the desired performance is realized. In most cases

40 iterations are enough.

Slit 𝑛

r𝑆,𝑛𝑒𝑤𝑛 r𝑆,𝑜𝑙𝑑𝑛

r ̄𝐹

|r𝑆,𝑛𝑒𝑤𝑛 − r ̄𝐹 | − |r𝑆,𝑛𝑒𝑤𝑛 − r ̄𝐹 | = 𝛿𝑛/𝑘SPP

x

y

Figure 5.3: Dislocation of slit 𝑛

In the steps above 𝑘SPP =< 𝑘SPP𝑚 >, that is the wave vector of SPP averaged over all

the desired operating wavelengths; rF̄ =< rF𝑚 > is the average position of the focal

points. Here it is assumed that the change in the overall phase after the relocation of

a single slit within an iteration step is negligible, so they are not taken into account.

Furthermore, the final slit positions converge to the same value provided that the slits

are moved in the correct direction in each iteration step. The 𝑊𝑚 is present in or-

der to obtain the correct slit pattern with balanced intensity on all the chosen focal

points. Initially𝑊𝑚 is unity for every focal position(that is𝑚) and it is updated in the
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subsequent iterations in compliance with the following expression:

𝑊 new𝑚 = 𝑊 old𝑚 (
max(|𝐸total𝑚 |2)

|𝐸total𝑚 | )

𝑞
(5.11)

Here 𝑞 must be small or else the algorithm is unstable [47]. In the article and my work

𝑞 is selected to be 0.1. The slits are only moved only in the 𝑥-direction for simplicity.

Since they act as point source dipoles moving them only in the 𝑦-direction should give
similar results.

In order to cross check my implementation of the algorithm I have used the same

design as the article. The input beam has a Gaussian spatial profile with a beam diam-

eter of 17 μm.

Focal Point 1 Focal Point 2 Focal Point 3

x(nm) 0 0 0

y(nm) -3000 0 3000

𝜆(nm) 820 850 880

Table 5.1: Original focii parameters in the article

In Table 5.1 the positions of the focii and the corresponding wavelengths to be

focused are given.

Beam diameter 17 μm

Au film thickness 75 nm

Periodicity in x 3 μm

Periodicity in y 1.5 μm

Number of columns 6

Number of rows 5

No of iterations 40

Slit width in x 120 nm

Slit length in y 500 nm

Table 5.2: Simulation parameters and initial conditions
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In Table 5.2 the excitation source parameters, the slit width/height, the gold film

thickness and the initial guess pattern (a periodic array) are given.

(a) The spectral distribution on the exit line for the initial guess

slit pattern

(b) The spectral distribution on the exit line for the optimized

slit pattern

Figure 5.4: Spectrum on 𝑥 = 0 line with the initial guess and after optimization

In Figure 5.4a the initial spectral distribution of the output at the exit line located

at 𝑥 = 0 is given, whereas in Figure 5.4b the spectral distribution of the output on the

same line is given after the optimization.

(a) The spectral distribution of the electric field norm on the

individual focal points

(b) The slit pattern after 40 iterations of the optimization algo-

rithm

Figure 5.5: Intensity and slit pattern while replicating the work in the article

In Figure 5.5a the spectral intensity pattern of the output light on the invidual focal
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points are given. In Figure 5.5b the locations of the slits after the optimization of the

algoritm are given and the focii are marked with red crosses. The slits are positioned in

such a way that the excited SPPs of the selected wavelengths interfere constructively

on the focal points and this is essentially the same logic with antenna theory.

(a) Spectra by the last column of slits (b) Spectra by all slits

Figure 5.6: Comparison of spectra

After optimization we wanted to isolate the effect of the rightest slit column in the

final spectra on the 𝑥 = 0 line. As you can see in Figure 5.6 the spectra on the exit

line is produced by the all of the slits collectively. The slits in the closest (rightest)

column are not entirely responsible for this spectra. In the next chapter we are going

to generalize this approach to wavelengths in the near-infrared regime and add stripe

waveguides after the focal points to investigate coupling.
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MODE COUPLING

Our aim is to couple incident light of different wavelengths into spatially separated

stripe waveguides. In Chapter 4 we investigated coupling into stripe waveguides with

SPP beam launchers. However, this approach failed due to the rapid variation of the

amplitude and phase of the modal electric field for a stripe waveguide of width 1 μm.

Therefore we propose an alternative design.

𝜆1

𝜆2

𝜆3Scatterer array

Figure 6.1: Designed coupler

The aim of the integrated device we design is to focus different wavelengths nor-

mally incident from the air side on the nanoslit/Δ-antenna pattern to different spatial

locations and have them coupled to the stripe waveguides placed on the focal points

as illustrated in Figure 6.1. In designing the scatterer-array we will make use of the al-

gorithm presented in Chapter 5 and we will simulate these array designs in Lumerical

FDTD Solutions to test their performance.
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(a) Fundamental mode |𝐸| with Lumerical (b) The |𝐸𝑧 | field with Lumerical

Figure 6.2: Mode profiles of gold stripe waveguides at 𝜆 = 1550 nm

The stripe waveguides have a thickness of 115 nm and a width of 1000 nm. All of

the three stripe waveguides are identical and the mode profiles for these waveguides

are given in Figure 6.2.

0.1 Nanoslits

First we deal with the nanoslits by selecting focal points in the NIR regime to conform

with the NIR2 channel in our optical setup spanning a wavelength range from 1200

nm to 1700 nm.

Focal Point 1 Focal Point 2 Focal Point 3

x(nm) 0 0 0

y(nm) -4000 0 4000

𝜆(nm) 1400 1500 1600

Table 6.1: Focus parameters used for nanoslits

The position of the focal points and the focused wavelengths are given in Table 6.1.

Each nanoslit has the dimension of 100 nm x 500 nm as they are resonant at 1550

nm (Figure 3.7). For the design with the waveguides and without the waveguides, the

number of iterations is 40 and the used pattern is the same.
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(a) Algorithm prediction (b) Lumerical FDTD solutions results

Figure 6.3: Intensity on the 𝑥 = 0 line for nanoslits

In Figure 6.3 it can be seen that the results from the algorithm and Lumerical FDTD

Solutions agree well with each other for the case without a waveguide. The result from

the FDTD solutions software has low spectral resolution in order to limit the file size

of the dataset.

(a) Positions of nanoslits (b) FDTD transmission results

Figure 6.4: Intensity on the 𝑥 = 0 line for nanoslits

Figure 6.4 is associated with the case where three stripe waveguides of 1 μm as

aforementioned. The slit positions are given in Figure 6.4a and the transmission is

given as the fraction of the total power injected by the source in Figure 6.4b. Note that

the same slit pattern is used for both cases (with/without waveguides).
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The total power injected by the Gaussian source is calculated as follows:

𝑃source(𝑓 ) =
1
2
¨

IP

ℜ(E(𝜔) × H∗(𝜔))
|𝑠(𝜔)|2 ⋅ 𝑑𝑆 (6.1)

𝑠(𝜔) =
ˆ

exp(𝑖𝜔𝑡)𝑠(𝑡)𝑑𝑡 (6.2)

Here 𝑠(𝑡) is the time signal of the source and IP is the injection-plane through which

the source is injected. This normalization eliminates the dependence of the simulation

results on the source spectrum and gives the impulse response of the system at various

wavelengths. Transmission is then defined to be the ratio of the transmitted power

through a particular cross-section (CS) to the total power injected by the source.

𝑇 = 𝑃CS
𝑃source

(6.3)

𝑃CS =
1
2
¨

CS

ℜ(E(𝜔) × H∗(𝜔))
|𝑠(𝜔)|2 ⋅ 𝑑𝑆 (6.4)

Focal Point 1 Focal Point 2 Focal Point 3

Transmission % 0.029 0.042 0.037

𝜆(nm) 1400 1500 1600

Table 6.2: Nanoslit array transmission percentage

These results may seem low since they indicate the percentage of light energy cou-

pled into the waveguide as a fraction of the total light energy injected by the source

as aforementioned. It should also be noted that the lowest wavelength peak occurs

at 1375 nm instead of 1400 nm and the highest wavelength peak occurs at 1575 nm

instead of 1600 nm.
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0.2 Δ-antennas

Focal Point 1 Focal Point 2 Focal Point 3

x(nm) 0 0 0

y(nm) -4000 0 4000

𝜆(nm) 1400 1500 1600

Table 6.3: Focus parameters used for Δ-antennas

With the Δ-antennas we select the same focal points as in the design for the nanoslits

to be able to directly compare the results, these are given in Table 6.3. The number

of iterations of the algorithm is 80 in this case; however later we found that there is

not much difference between 40 iterations and 80 iterations. In this section we will

first present a non-optimal Δ-antenna design, then proceed to the optimal Δ-antenna
design to emphasize the contrast. Finally we present the optimal Δ-antenna design

with the light incident from the substrate (silica) side.

6.2.1 Design with 𝑤𝑏 = 500 nm, ℎ = 800 nm

We first chose a Δ-antenna with a basewidth of 500 nm and a height of 800 nm which

is not optimal according to analysis in Chapter 3.

(a) Algorithm prediction (b) Lumerical FDTD solutions results

Figure 6.5: Δ-antenna intensity pattern on 𝑥 = 0 line
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The resulting spectral pattern on the 𝑥 = 0 line after the FDTD simulation (Fig-

ure 6.5b) have good correspondence with the prediction by the algorithm (Figure 6.5a).

(a) Positions of Δ-antennas (b) FDTD transmission results

Figure 6.6: The Δ-antenna pattern and the intensity profile in the waveguides

The same Δ-antenna pattern is also used for the case in which the gold film is termi-

nated with three 1 μm wide gold stripe waveguides, which is illustrated in Figure 6.1.

The Δ-antenna pattern from the algorithm is given in Figure 6.6a and the intensity of

the light coupled into the waveguides is given in Figure 6.6b.

Focal Point 1 Focal Point 2 Focal Point 3

Transmission % 0.025 0.029 0.030

𝜆(nm) 1400 1500 1600

Table 6.4: Δ-antenna(𝑤𝑏 = 500 nm, ℎ = 800 nm) array transmission percentage

Table 6.4 summarizes the transmission percentages for the focal points. Comparing

this result with those from the nanoslits we arrive at the conclusion that the peaks are

in the correct positions, and the intensity distribution is more uniform.

6.2.2 Design with 𝑤𝑏 = 900 nm, ℎ = 800 nm

This is the optimal Δ-antenna design according to our analysis in Chapter 3, please

refer to Figure 3.13. We will see that this design gives the maximum performance.
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(a) Algorithm prediction (b) Lumerical FDTD solutions results

Figure 6.7: Δ-antenna intensity pattern on 𝑥 = 0 line

After the FDTD simulation the resulting spectral pattern on the 𝑥 = 0 line have

good correspondence with the prediction by the algorithm as shown in Figure 6.7 and

comparing these results with Figure 6.5 we arrive at the conclusion that this design has

better focusing properties thanks to the enhanced forward scattering cross-section of

the Δ-antennas.

(a) Positions of Δ-antennas (b) FDTD transmission results

Figure 6.8: The Δ-antenna pattern and the intensity profile in the waveguides

In Figure 6.8a the positions of theΔ-antennas are shown. Note that this patternwas
used for both structures, with or without waveguides. The transmission percentages

to the corresponding stripe waveguide modes are given in Figure 6.8b.
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Focal Point 1 Focal Point 2 Focal Point 3

Transmission % 0.045 0.059 0.056

𝜆(nm) 1400 1500 1600

Table 6.5: Δ-antenna (𝑤𝑏 = 900 nm, ℎ = 800 nm) array transmission percentage

The distribution is non-uniform as the lowest wavelength peak is smaller com-

pared to the higher wavelength peaks.The highest wavelength peak occurs at 1625 nm

instead of 1600 nm. The intensities are almost double of the values observed with the

nanoslit and non-optimized Δ-antenna design.

6.2.3 Design with 𝑤𝑏 = 900 nm, ℎ = 800 nm with SPP on air-metal

Here we wanted to see how the optimized Δ-antenna design fares when the structure

is illuminated from the substrate (silica) side. This time an FDTD simulation without

waveguides could not be performed due to time/computing constraints.

(a) Positions of Δ-antennas (b) FDTD spectral map on 𝑥 = 0 line

Figure 6.9: The Δ-antenna pattern and the intensity profile in the waveguides

In Figure 6.9a the positions of the Δ-antennas are show. This pattern is used in

the simulation with waveguides as before. Figure 6.9b show the prediction from the

algorithm on 𝑥 = 0 line. Note that this time peaks aremore spread over in both spectral

and spatial domains.
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(a) Algorithm prediction (b) Lumerical FDTD solutions results with WGs

Figure 6.10: Δ-antenna intensity pattern on 𝑥 = 0 line

The prediction by the algorithm on the 𝑥 = 0 line for the three wavelengths are

given in Figure 6.10a. After inspecting Figure 6.10b which corresponds to the result

from Lumerical FDTD Solutions for the case with waveguides, we see that the corre-

spondance between simulation results and the prediction by the algorithm was not

good this time for the middle wavelength of 1500 nm.

Focal Point 1 Focal Point 2 Focal Point 3

Transmission % 0.035 0.009 0.009

𝜆(nm) 1400 1500 1600

Table 6.6: Δ-antenna(𝑤𝑏 = 900 nm, ℎ = 800 nm) array transmission percentage with

SPP on air-metal

This time the result was pretty bad for the middle peak and the other peaks were

also shifted to lower wavelengths. Furthermore, the peaks were wide compared to the

previous designs with Δ-antennas and nanoslits which were illuminated from the air

side.
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CONCLUSION AND FUTURE WORK

In this thesis an approach integrating plasmonic wavelength division demulti-

plexer with plasmonic stripe waveguides was presented. Wavelength division mul-

tiplexing (WDM) refers to the process of combining, transmitting and separating of

optical signals of different wavelengths. The main purpose in WDM is to enable the

transmission of data in several channels; thus increasing the bandwidth available [48].

In optical communication WDM is used for propagating data over transoceanic dis-

tances together with the advent of erbium-doped fiber amplifiers (EDFA) [49] and it

is also widely used since 1999 for terrestial networks with ever increasing number of

channels [50]. Previously various designs for plasmonic demultiplexers were studied,

but none of them examined the coupling of the demultiplexed light into plasmonic

stripe waveguides.

With this aim in mind we started by characterizing single scatterers. First we se-

lected Δ-antennas of the same geometry as in the article by Oubo You [14] and in-

vestigated its radiation pattern on a gold film with the same thickness and dielectric

permittivity as in the paper. The results from our FDTD simulations corresponded

really well with the results from the original paper, confirming our approach and sim-

ulation technique. We used this approach to characterize rectangular nanoslits which

are the other type of scatterers we used and Δ-antennas optimized to 1550 nm free-

space wavelength. Furthermore after replicating the SPP beam launcher in the paper,

we explored the possibility of realizing mode-coupling by designing a beam launcher

as described in this paper to produce an SPP beam with the same profile as a 1 μm

wide stripe waveguide mode. However, this approach failed due to the fine features

in the mode-profile as discussed in Chapter 4. Therefore we decided to use a different

approach.

We decided to use the wavelength demultiplexer design proposed by Tanemura [2]
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consisting of an array of nanoslits whose scattering pattern is adjustedwith an iterative

algorithm in such a way that SPPs of selected wavelengths interfere constructively

on the selected focal points on the exit line. In this algorithm the nanoslits are only

moved in the 𝑥 direction for an easy implementation. These rectangular nanoslits

radiated most in the direction perpendicular to their long sides, yet most radiation in

Δ antennas were directed perpendicular to the base of the triangle to the opposite site

of the vertex. This is valid for antennas having an height of 505 nm and a width of 300

nm turned out to radiate unidirectionally for a free-space wavelength of 633 nm and

for the antennas operating at a free-space wavelength of 1550 nm the corresponding

height and basewidth value are 1360 nm and 950 nm, respectively. The dimension of

the nanoslit and Δ-antenna were selected to have the highest forward scattering cross-
section to couple the most light energy possible to the focal spots. In this step we also

performed a fit for the radiation pattern to be able to use different scatterers in the

same algorithm. The fits were performed on a circle with radius 2 μm centered on the

scatterer and checked on a circle with the same center but a radius of 4 μm. The fits

were good, yet not in exact agreement with the interpolated simulation data on the

circle possibly due to the excitation of waves other than SPPs.

We began our multiplexer design with a triplexer as in the study by Takuo Tane-

mura et al. to validate our implementation of the algorithm [2]. The location of focal

points and the associated wavelengths were the same in both cases. There was good

correspondence between the results by our implementation of the algorithm and the

results of the original algorithm. After having confirmed our implementation of the

algorithm we did an FDTD simulation with the slits in the positions predicted by our

algorithm and the results were similar to the prediction of our implementation.

After these verifications we proceed with a design in the infrared and selected to

focus SPPs having the wavelength of 1400 nm, 1500 nm and 1600 nm at the y posi-

tion of -4 μm, 0 μm and 4 μm. We chose these wavelengths to be compatible with our

optical setup. First we performed two simulations for an array of nanoslits, one with

waveguides and one without waveguides. There were good correspondence between

algorithm results and FDTD results. However the peaks were slightly off their in-

tended positions. The transmission percentages were of the order 10−4 of the incident
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light energy. When we performed two other simulation for Δ-antennas (𝑤𝑏 = 500nm,

ℎ = 800𝑛𝑚) we found out that the transmissions values were similar yet the middle

peak were not well defined. Then we performed simulation for optimized Δ-antennas
(𝑤𝑏 = 900nm, ℎ = 800𝑛𝑚) there were again good correspondence between algorithm

predictions and FDTD results. This scatterer yielded the best transmission results

which corresponds to 10−3 of the incident light energy which is two-folds of the pre-

vious result. Lastly we tried illumination from the substrate (silica) side, yet the peaks

were spread over too much and the focusing of middle wavelength was pretty poor as

shown at the end of Chapter 6.

In the future the wavelength demultiplexer design consisting of Δ-antennas with
𝑤𝑏 = 900 nm, ℎ = 800 nm presented in Chapter 6 can be manufactured with conven-

tional lithography techniques along with plasmonic waveguides and integrated photo

sensors in order to quantitatively measure the light intensity and compare it with the

FDTD simulation results presented in this article. The device performance may be

improved by designing better transition regions to waveguides in order to minimize

the reflection at the gold film-waveguide boundary. Furthermore, different scatterer

geometries and algorithms may also be investigated to see if they yield higher perfor-

mance.
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Appendix A

SUN GRID ENGINE SCRIPTS

This appendix includes the job submission scripts for the high performance com-

puting clusters in our facility, namely Yunus and Lufer which runs on Sun Grid En-

gine 6.2u5. The simulations were performed with Lumerical FDTD Solutions version

8.15.697 and the connections to the HPC server are established via MobaXterm on

Windows or ssh via command prompt on Linux.

1 #!/bin/bash

2 #$ -N Lumerical

3 #$ -S /bin/bash

4 #$ -q all.q

5 #$ -pe mpich 5

6 #$ -cwd

7 #$ -o Lumericalstdout.log

8 #$ -e Lumericalstderr.log

9 #$ -l mem_free=34G

10 #$ -M oarisev14@ku.edu.tr

11 #$ -m bea

12

13 export PATH=/share/apps/lumerical/fdtd-8.15.697/bin:$PATH

14 export LD_LIBRARY_PATH=/usr/lib64:/usr/lib:$LD_LIBRARY_PATH

15

16 PATH=/share/apps/libxml2/libxml2-2.9.2/bin:$PATH ; export PATH

17 LD_LIBRARY_PATH=/share/apps/libxml2/libxml2-2.9.2/lib:$LD_LIBRARY_PATH ; export

LD_LIBRARY_PATH↪

18

19 sh /share/apps/lumerical/fdtd-8.15.697/bin/fdtd-run-local.sh -n 5 *.fsp

The explanation of the lines above are given in the list on the next page.
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1. Name of the submitted job(other users also see it)

2. Path to the shell to be used

3. Which queue the job goes(all.q or short.q in our HPC)

4. Name of the parallel environment(smp or mpich for FDTD Solutions)

5. Have output placed in the current working directory(cwd)

6. Standard output(can use bash variables such as $JOB_ID)

7. Standard error (can use bash variables such as $JOB_ID)

8. Hard resource requirement(34 GB of RAM in this case)

9. Address to mail to

10. Mail under which conditions(b-begin, e-end, a-abort)

On lines 5 and 19 the number of processors used is written and they must be the

same. Another example job script using the smp parallel environment, short queue

that is allocated for jobs having a run time lower than 2 hours(short.q) and no hard

resource limit is given on the next page. For a tutorial on how to use the Sun Grid

Engine one can refer to the following URLs:

• Koç University Tutorial with sample files

• NJIT-Quick SGE

• More in depth guide

https://wiki.ku.edu.tr/display/HPC/Home
https://web.njit.edu/topics/HPC/basement/sge/SGE.html
http://bioinformatics.mdc-berlin.de/intro2UnixandSGE/index.html
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1 #!/bin/bash

2 #$ -N Lumerical

3 #$ -S /bin/bash

4 #$ -q short.q

5 #$ -pe smp 10

6 #$ -cwd

7 #$ -o $JOB_ID.out

8 #$ -e $JOB_ID.err

9 #$ -M oarisev14@ku.edu.tr

10 #$ -m bea

11

12 export PATH=/share/apps/lumerical/fdtd-8.15.697/bin:$PATH;

13 export LD_LIBRARY_PATH=/usr/lib64:/usr/lib:$LD_LIBRARY_PATH;

14

15 PATH=/share/apps/libxml2/libxml2-2.9.2/bin:$PATH ; export PATH;

16 LD_LIBRARY_PATH=/share/apps/libxml2/libxml2-2.9.2/lib:$LD_LIBRARY_PATH ; export

LD_LIBRARY_PATH;↪

17

18 sh /share/apps/lumerical/fdtd-8.15.697/bin/fdtd-run-local.sh -n 10 *.fsp;
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MATLAB CODES

Most of the calculations, implementation of the algorithms, plotting and processing

figures are done in Matlab. Here we are going to present the most important codes.

We start with the codes used for characterization of single scatterers.

B.1 Characterization of single scatterer

1 clear;

2 close all;

3 %% Choose the radius of the circle

4 R = 2000;

5 dt = 1/100;

6 theta = (0:dt:1) * 2 * pi;

7 % Adjust the phase to rotate the image

8 ROT = -pi / 2;

9 % Get the x and y coordinates of the circle

10 XI = R * cos(theta - ROT);

11 YI = R * sin(theta - ROT);

12 N = 13; % Number of data sets

13 wb = 240:10:360; % The changing base width

14 idstr = 'StandardSubst';

15 %% Load the files

16 for i = 1:N

17 load(sprintf('../Data/ScatterFINEsubst%d.mat', N+1-i), 'Eabov*');

18 ELUM{i} = Eabove;

19 end

20 Lsize = length(Eabove.lambda);

21 % Loop over wavelength

22 for f_ind = 1:Lsize

23 % Loop over all the files with differing base widths

24 for i = 1:N

25 % f_ind = 1;

26 Eabove = ELUM{i};

27 if i == 1

28 X = round(Eabove.x * 1e9);

29 Y = round(Eabove.y * 1e9);

30 [XX,YY] = ndgrid(X,Y);
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31 end

32 % Check the dimension of the electric field

33 s = size(Eabove.E); l = length(s);

34 if l == 2

35 E{i}.Ex = flipud(reshape(Eabove.E(:, 1), length(X), length(Y)));

36 E{i}.Ey = flipud(reshape(Eabove.E(:, 2), length(X), length(Y)));

37 E{i}.Ez = flipud(reshape(Eabove.E(:, 3), length(X), length(Y)));

38 lambda = round(Eabove.lambda * 1e9);

39 elseif l == 3

40 % f_ind corresponds to the frequency index

41 E{i}.Ex = flipud(reshape(Eabove.E(:, 1, f_ind), length(X), length(Y)));

42 E{i}.Ey = flipud(reshape(Eabove.E(:, 2, f_ind), length(X), length(Y)));

43 E{i}.Ez = flipud(reshape(Eabove.E(:, 3, f_ind), length(X), length(Y)));

44 lambda = round(Eabove.lambda(f_ind) * 1e9);

45 end

46 % Derived variables

47 E{i}.Norm = sqrt(E{i}.Ex .* conj(E{i}.Ex) + E{i}.Ey .* conj(E{i}.Ey) + E{i}.Ez .*

conj(E{i}.Ez));↪

48 Enorm = E{i}.Norm;

49 E{i}.X = round(Eabove.x * 1e9);

50 E{i}.Y = round(Eabove.y * 1e9);

51 % Add pi since we polar plot does not support negative r values

52 E{i}.EzPhase = angle(E{i}.Ez) + 2*pi;

53 EzPhase = E{i}.EzPhase;

54

55 %% Form gridded interpolants to interpolate the data on the circle

56 EnormInt = griddedInterpolant(XX, YY, Enorm);

57 EnormCirc = EnormInt(XI, YI);

58 EzPhaseInt = griddedInterpolant(XX, YY, EzPhase);

59 EzPhaseCirc= EzPhaseInt(XI, YI);

60 E{i}.NormCircle = EnormCirc;

61 E{i}.EzPhaseCircle = EzPhaseCirc;

62 Norm{i} = EnormCirc;

63 Phase{i} = EzPhaseCirc;

64 %% For testing purposes

65 % figure;

66 % imagesc(X, Y, Enorm);

67 if i == 1;

68 f1 = figure;

69 end

70 p1(i) = polar(theta, EzPhaseCirc);

71 p1(i).LineWidth = 2;

72 if i == 1

73 hold on;

74 end

75 end

76 l = legend('360', '350', '340', '330', '320', '310', '300', '290', '280', '270', '260', '250',

'240', 'Location', 'northeastoutside');↪
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77 l.FontSize = 18;

78 tstring = ['Phase of E_z for varying base widths at \lambda = ' int2str(lambda) 'nm'];

title(tstring);↪

79 % saveas(f1, ['./Plot/EPhaseL', idstr, int2str(lambda), '.fig']);

80 polarticks(tstring, 4, p1);

81 th = findall(gcf,'Type','text');

82 for i = 1:length(th),

83 set(th(i),'FontSize',18)

84 end

85 f1.PaperUnits = 'points';

86 f1.PaperPosition = [0 0 640 480];

87 print(['./Plot/EPhaseL', idstr, int2str(lambda), '.png'], '-dpng', '-r144');

88

89 for i = 1:N

90 if i == 1

91 f2 = figure;

92 end

93 p2(i) = polar(theta, 360 / wb(i) * E{i}.NormCircle.^2);

94 p2(i).LineWidth = 2;

95 if i == 1

96 hold on;

97 end

98 end

99 l = legend('360', '350', '340', '330', '320', '310', '300', '290', '280', '270', '260', '250',

'240', 'Location', 'northeastoutside');↪

100 l.FontSize = 18;

101 tstring = ['|E|^2 for varying base widths at \lambda = ', int2str(lambda) 'nm'];

title(tstring);↪

102 % saveas(f2, ['./Plot/E2L', idstr, int2str(lambda), '.fig']);

103 polarticks(tstring, 4, p2);

104 th = findall(gcf,'Type','text');

105 for i = 1:length(th),

106 set(th(i),'FontSize',18)

107 end

108 f2.PaperUnits = 'points';

109 f2.PaperPosition = [0 0 640 480];

110 print(['./Plot/E2L', idstr, int2str(lambda), '.png'], '-dpng', '-r144');

111 if l == 2

112 break;

113 end

114 end

The code is essentially the same for the rectangular nanoslit scatters and it can

easily be extended to accommodate wavelength dependence. The polarticks function
by Adam Danz is necessary to obtain nice polar plots since built-in functionality for

polar plots in Matlab prior to R2016a is really limited.

http://www.mathworks.com/matlabcentral/fileexchange/46087-polarticks-m
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B.2 Fitting Script

The fits are done with the following script for the Δ-antennas, the script for the rect-
angular nanoslits is similar.

1 clear;

2 close all;

3 %% The excitation is from silica side

4 load('../Data/DeltaAntenna2AirTF.mat');

5 %% Pay attention to where SPPs should propagate

6 load('../Data/kSPP1200-1700JCsilica');

7 ksppNERF = kspp(1:25:end);

8 id = 'Delta2SingleSPPsilica';

9 % Get Lumerical data in units of nanometers

10 X = round(Esurface.x * 1e9);

11 Y = round(Esurface.y * 1e9);

12 R1 = 2000; % in nanometers

13 R2 = 4000; % in nanometers

14 dt = 1/100; % the increment fraction in the angle

15 theta = (0:dt:1) * 2 * pi; % Angular sweep

16 [XX,YY] = ndgrid(X, Y); % X and Y as meshgrid

17 ROT = 0; % We may need to rotate the coordinates

18 %% Circle X and Y

19 XI = R1 * cos(theta + ROT);

20 YI = R1 * sin(theta + ROT);

21 XII = R2 * cos(theta + ROT);

22 YII = R2 * sin(theta + ROT);

23 Larr = round(Esurface.lambda * 1e9); % wavelength array in nanometers

24 %% Reshaping of Lumerical datasets

25 for i = 1:numel(Larr)

26 Esurf{i}.Ex = (reshape(Esurface.E(:, 1, i), length(X), length(Y)));

27 Esurf{i}.Ey = (reshape(Esurface.E(:, 2, i), length(X), length(Y)));

28 Esurf{i}.Ez = (reshape(Esurface.E(:, 3, i), length(X), length(Y)));

29 Esurf{i}.Norm = sqrt(Esurf{i}.Ex .* conj(Esurf{i}.Ex) + Esurf{i}.Ey .* conj(Esurf{i}.Ey) +

Esurf{i}.Ez .* conj(Esurf{i}.Ez));↪

30 % We take the z component of the electric field

31 EzSurfInt = griddedInterpolant(XX, YY, Esurf{i}.Ez); % interpolation

32 EzSurfIntArr{i} = EzSurfInt;

33 EzSurfCirc1{i} = EzSurfInt(XI, YI);

34 EzSurfCirc2{i} = EzSurfInt(XII, YII);

35 EzSurfCircInt{i} = griddedInterpolant(theta, EzSurfCirc1{i});

36 end

37 f1 = figure(1);

38 k = 1;

39 indfor = 1:2:numel(Larr);

40 indfor = 15;

41 for i = indfor
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42 plt = real(EzSurfCirc1{i});

43 p = plot(theta,plt./max(plt));

44 if k == 1; hold on; end

45 legendinfo{k} = [num2str(Larr(i)) ' nm'];

46 k = k + 1;

47 end

48 xlabel('Angle(rad)');

49 ylabel('Intensity normalized(a.u)');

50 title([id ' Re(E) along a circle of radius R=', num2str(R1), ' nm'])

51 legend(legendinfo);

52 f1.PaperUnits = 'points';

53 f1.PaperPosition = [0 0 640 480];

54 ax.FontSize = 18;

55 ax.XTick = [-2*pi -pi 0 pi 2*pi];

56 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

57 fname = [id 'Real' num2str(R1)];

58 print(['./Plot/' fname], '-dpng', '-r144');

59 %saveas(f1, ['./Plot/' fname]);

60

61 f2 = figure(2);

62 k = 1;

63 for i = indfor

64 plt = imag(EzSurfCirc1{i});

65 p = plot(theta,plt./max(plt));

66 if k == 1; hold on; end

67 legendinfo{k} = [num2str(Larr(i)) ' nm'];

68 k = k + 1;

69 end

70 xlabel('Angle(rad)');

71 ylabel('Intensity normalized(a.u)');

72 title([id ' Im(E) along a circle of radius R=', num2str(R1), ' nm'])

73 legend(legendinfo);

74 f2.PaperUnits = 'points';

75 f2.PaperPosition = [0 0 640 480];

76 ax.FontSize = 18;

77 ax.XTick = [-2*pi -pi 0 pi 2*pi];

78 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

79 fname = [id 'Imag' num2str(R1)];

80 print(['./Plot/' fname], '-dpng', '-r144');

81 %saveas(f2, ['./Plot/' fname]);

82

83 f3 = figure(3);

84 k = 1;

85 for i = indfor

86 plt = abs(EzSurfCirc1{i});

87 p = plot(theta,plt./max(plt));

88 legendinfo{k} = [num2str(Larr(i)) ' nm'];

89 k = k + 1;



68 Appendix B: Matlab Codes

90 end

91 xlabel('Angle(rad)');

92 ylabel('Intensity normalized(a.u)');

93 title([id ' |E| along a circle of radius R=', num2str(R1), ' nm'])

94 legend(legendinfo);

95 f3.PaperUnits = 'points';

96 f3.PaperPosition = [0 0 640 480];

97 ax.FontSize = 18;

98 ax.XTick = [-2*pi -pi 0 pi 2*pi];

99 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

100 fname = [id 'Abs' num2str(R1)];

101 print(['./Plot/' fname], '-dpng', '-r144');

102 %saveas(f3, ['./Plot/' fname]);

103

104 f4 = figure(4);

105 k = 1;

106 for i = indfor

107 plt = angle(EzSurfCirc1{i});

108 plot(theta,plt./max(1));

109 if k == 1; hold on; end

110 legendinfo{k} = [num2str(Larr(i)) ' nm'];

111 k = k + 1;

112 end

113 xlabel('Angle(rad)');

114 ylabel('Phase');

115 title([id ' phase(E_z) a circle of radius R=', num2str(R1), ' nm'])

116 legend(legendinfo);

117 f4.PaperUnits = 'points';

118 f4.PaperPosition = [0 0 640 480];

119 ax.FontSize = 18;

120 ax.XTick = [-2*pi -pi 0 pi 2*pi];

121 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

122 fname = [id 'Phase' num2str(R1)];

123 print(['./Plot/' fname], '-dpng', '-r144');

124 %saveas(f4, ['./Plot/' fname]);

125

126

127 for i = 1:numel(Larr)

128 fieldR2{i} = EzSurfCirc1{i} * exp(1i * ksppNERF(i) * (R2 - R1) * 1e-9) * sqrt(R1 / R2);

129 end

130

131 p1 = fieldR2{indfor};

132 p2 = EzSurfCirc2{indfor};

133

134 f5 = figure(5);

135 plot(theta, real(p1), 'linewidth', 2);

136 hold on;

137 plot(theta, real(p2), 'linewidth', 2);
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138 title('Real parts');

139 f5.PaperUnits = 'points';

140 f5.PaperPosition = [0 0 640 480];

141 ax = gca;

142 ax.FontSize = 18;

143 ax.XTick = [-2*pi -pi 0 pi 2*pi];

144 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

145 legend('Fit', 'Interpolation');

146 fname = [id 'FitCompareReal' num2str(R1)];

147 print(['./Plot/' fname], '-dpng', '-r144');

148 %saveas(f5, ['./Plot/' fname]);

149

150 f6 = figure(6);

151 plot(theta, imag(p1), 'linewidth', 2);

152 hold on;

153 plot(theta, imag(p2), 'linewidth', 2);

154 title('Imaginary parts');

155 f6.PaperUnits = 'points';

156 f6.PaperPosition = [0 0 640 480];

157 ax = gca;

158 ax.FontSize = 18;

159 ax.XTick = [-2*pi -pi 0 pi 2*pi];

160 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

161 legend('Fit', 'Interpolation');

162 fname = [id 'FitCompareImag' num2str(R1)];

163 print(['./Plot/' fname], '-dpng', '-r144');

164 %saveas(f6, ['./Plot/' fname]);

165

166 f7 = figure(7);

167 plot(theta, abs(p1), 'linewidth', 2);

168 hold on;

169 plot(theta, abs(p2), 'linewidth', 2);

170 title('Magnitude');

171 f7.PaperUnits = 'points';

172 f7.PaperPosition = [0 0 640 480];

173 ax = gca;

174 ax.FontSize = 18;

175 ax.XTick = [-2*pi -pi 0 pi 2*pi];

176 ax.XTickLabel = {'-2\pi','-\pi','0','\pi','2\pi'};

177 legend('Fit', 'Interpolation');

178 fname = [id 'FitCompareAbs' num2str(R1)];

179 print(['./Plot/' fname], '-dpng', '-r144');

180 %saveas(f7, ['./Plot/' fname]);

181

182 cst = find( X == min(abs(X)));

183 f8 = figure(8);

184 subplot(1,2,1);

185 imagesc(X,Y, real(Esurf{indfor}.Ez).', [-1e-1 1e-1]);
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186 xlabel('x(nm)');

187 ylabel('y(nm)');

188 set(gca, 'YDir','normal');

189 colorbar; colormap jet;

190 subplot(1,2,2);

191 plot(X,real(Esurf{indfor}.Ez(cst,:))); % .*sqrt(abs(X.'))

192 xlabel('y(nm)');

193 xlim([-5000 5000]);

194 fname = [id 'PatternMiddle' num2str(R1)];

195 print(['./Plot/' fname], '-dpng', '-r144');

196 %saveas(f8, ['./Plot/' fname]);

197

198 EzSurfCircDelta = EzSurfCircInt;

199 % save('../Data/CircleFitDeltaAir.mat', 'EzSurfCirc*');

B.3 Scattering Analysis Script

The scattering cross-section normalized to the geometric cross-section of the scatter-

ers are calculated to decide what the height, width of the scatterer should be. In the

code quoted below Δ-antennas having a base width of 900 nm and various heights are

characterized; forward scattering in the 𝑦2 direction is of concern here.

1 clear;

2 close all;

3 load('../Data/Delta2HeightSweepData.mat');

4 Q = 1;

5 % The minus signs are there to revert the surface normal

6 % The scattering cross section is given in m^2 please look at Lumerical

7 % Script files for details

8 baseSI = 900e-9;

9 heightSI = height;

10 areaSI = repmat(baseSI .* heightSI / 2, 1, numel(LambdaArr));

11 if Q == 1

12 y2_2 = y2_2 ./ areaSI;

13 y1_2 = y1_2 ./ areaSI;

14 x2_2 = x2_2 ./ areaSI;

15 x1_2 = x1_2 ./ areaSI;

16 z2_2 = z2_2 ./ areaSI;

17 z1_2 = z1_2 ./ areaSI;

18 Total = Total ./ areaSI;

19 Total_2 = Total_2 ./ areaSI;

20 end

21 f1 = figure;

22 imagesc(LambdaArr*1e9, base*1e9,y2_2);
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23 colormap jet;

24 colorbar;

25 title('\Delta Forward Scattering(y2 normal) (w_b = 900 nm)');

26 xlabel('\lambda (nm)');

27 ylabel('Height (nm)');

28 f1.PaperUnits = 'points';

29 f1.PaperPosition = [0 0 640 480];

30 ax = gca;

31 ax.FontSize = 18;

32 print(f1, './Plot/DeltaHForwardScattering.png', '-dpng', '-r144');

33 % saveas(f1, './Plot/DeltaHForwardScattering.fig');

34

35 f2 = figure;

36 imagesc(LambdaArr*1e9, base*1e9, -y1_2);

37 colormap jet;

38 colorbar;

39 title('\Delta Backward Scattering(y1 normal) (w_b = 900 nm)');

40 xlabel('\lambda (nm)');

41 ylabel('Height (nm)');

42 f2.PaperUnits = 'points';

43 f2.PaperPosition = [0 0 640 480];

44 ax = gca;

45 ax.FontSize = 18;

46 print(f2, './Plot/DeltaHBackwardScattering.png', '-dpng', '-r144');

47 % saveas(f2, './Plot/DeltaHBackwardScattering.fig');

48

49 f3 = figure;

50 imagesc(LambdaArr*1e9, base*1e9,-x1_2);

51 colormap jet;

52 colorbar;

53 title('\Delta Side scattering(x1 normal) (w_b = 900 nm)');

54 xlabel('\lambda (nm)');

55 ylabel('Height (nm)');

56 f3.PaperUnits = 'points';

57 f3.PaperPosition = [0 0 640 480];

58 ax = gca;

59 ax.FontSize = 18;

60 print(f3, './Plot/DeltaHXpScattering.png', '-dpng', '-r144');

61 % saveas(f3, './Plot/DeltaHXpScattering.fig');

62

63 f4 = figure;

64 imagesc(LambdaArr*1e9, base*1e9, x2_2);

65 colormap jet;

66 colorbar;

67 title('\Delta Side scattering(x2 normal) (w_b = 900 nm)');

68 xlabel('\lambda (nm)');

69 ylabel('Height (nm)');

70 f4.PaperUnits = 'points';
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71 f4.PaperPosition = [0 0 640 480];

72 ax = gca;

73 ax.FontSize = 18;

74 print(f4, './Plot/DeltaHXmScattering.png', '-dpng', '-r144');

75 % saveas(f4, './Plot/DeltaHXmScattering.fig');

76

77 f5 = figure;

78 imagesc(LambdaArr*1e9, base*1e9, -z1_2);

79 colormap jet;

80 colorbar;

81 title('\Delta Bottom scattering(z1 normal) (w_b = 900 nm)');

82 xlabel('\lambda (nm)');

83 ylabel('Height (nm)');

84 f5.PaperUnits = 'points';

85 f5.PaperPosition = [0 0 640 480];

86 ax = gca;

87 ax.FontSize = 18;

88 print(f5, './Plot/DeltaHZmScattering.png', '-dpng', '-r144');

89 % saveas(f5, './Plot/DeltaHZmScattering.fig');

90

91 f6 = figure;

92 imagesc(LambdaArr*1e9, base*1e9,z2_2);

93 colormap jet;

94 colorbar;

95 title('\Delta Top scattering(z2 normal) (w_b = 900 nm)');

96 xlabel('\lambda (nm)');

97 ylabel('Height (nm)');

98 f6.PaperUnits = 'points';

99 f6.PaperPosition = [0 0 640 480];

100 ax = gca;

101 ax.FontSize = 18;

102 print(f6, './Plot/DeltaHZpScattering.png', '-dpng', '-r144');

103 % saveas(f6, './Plot/DeltaHZpScattering.fig');

104

105 t2 = z2_2 - z1_2 + y2_2 - y1_2 + x2_2 - x1_2;

106

107 % f7 = figure;

108 % imagesc(LambdaArr*1e9, base*1e9,t2);

109 % colormap jet;

110 % colorbar;

111 % title('\Delta Total scattering(inside script calc.)');

112 % xlabel('\lambda (nm)');

113 % ylabel('Height (nm)');

114 % f6.PaperUnits = 'points';

115 % f6.PaperPosition = [0 0 640 480];

116 % print(f7, './Plot/DeltaHTotalScatteringScript.png', '-dpng', '-r144');

117 % saveas(f7, './Plot/DeltaHTotalScatteringScript.fig');

118
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119 f8 = figure;

120 imagesc(LambdaArr*1e9, base*1e9,Total_2);

121 colormap jet;

122 colorbar;

123 title('\Delta Total scattering (w_b = 900 nm)');

124 xlabel('\lambda (nm)');

125 ylabel('Height (nm)');

126 f6.PaperUnits = 'points';

127 f6.PaperPosition = [0 0 640 480];

128 ax = gca;

129 ax.FontSize = 18;

130 print(f8, './Plot/DeltaHTotalScattering.png', '-dpng', '-r144');

131 % saveas(f8, './Plot/DeltaHTotalScattering.fig');

132

133 f9 = figure;

134 imagesc(LambdaArr*1e9, base*1e9,-Total);

135 colormap jet;

136 colorbar;

137 title('\Delta Total absorption (w_b = 900 nm)');

138 xlabel('\lambda (nm)');

139 ylabel('Height (nm)');

140 f6.PaperUnits = 'points';

141 f6.PaperPosition = [0 0 640 480];

142 ax = gca;

143 ax.FontSize = 18;

144 print(f9, './Plot/DeltaHTotalAbsorption.png', '-dpng', '-r144');

145 % saveas(f9, './Plot/DeltaHTotalAbsorption.fig');

B.4 Hermite-Gauss SPP beam reproduction

The following code is used for the discretization of the Hermite-Gauss SPP beam and

processing of the FDTD simulation data.

1 % The analytical expression for second order Hermite-Gauss beam

2 clear;

3 close all;

4 load('../Data/AntennaArrayMesh4.mat', 'E0', 'E5', 'E10', 'E15'); % FDTD simulation data

5 Ez0 = E0.E(:,3);

6 Ez5 = E5.E(:,3);

7 Ez10 = E10.E(:,3);

8 Ez15 = E15.E(:,3);

9 xLum = round(E0.x*1e9)/1e3;

10 %% The relevant parameters

11 kp = 10.40e6; % real k in units of meter inversed

12 kpp = 0.059e6; % imaginary k
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13 lspp = 605; % The wavelength of SPP in nanometers

14 W0 = 2e-6; % as in the article

15 y0 = 15e-6; % as in the article

16 y = 0e-6; % the position of the exit line as in the article

17 x = (-8:0.01:8) * 1e-6; % the x array in micrometers

18 N = 7; % number of rows as in the article

19 %% The anonymous function definitions

20 W2 = @(y) (W0^2)*(1 + (2*(y - y0)./(kp*W0^2))^2);

21 R = @(y) (y - y0) * ( 1 + ((kp * W0^2)./(2 * (y - y0))).^2);

22 Phi = @(y) -atan(2*(y - y0)./(kp*W0^2));

23 % The expression for the z component of the electric field

24 EzSimp = hermiteH(2, ((sqrt(2).*x)./(sqrt(W2(y))))) .* exp((-x.^2)./(W2(y))) .*

exp((1i*kp.*x.^2)./(2*R(y)));↪

25 %% Plot the amplitude of Ez

26 f1 = figure(1);

27 ax = axes;

28 NormEz = abs(EzSimp)./max(abs(EzSimp));

29 plot(ax, x*1e6, NormEz, '-b', 'linewidth', 2);

30 xlim([-7 7]);

31 ylim([0 1.1]);

32 title('Norm', 'fontweight', 'bold');

33 xlabel('x(\mum)', 'fontweight', 'bold');

34 ylabel('|E_z|', 'fontweight', 'bold');

35 ax.XColor = 'blue';

36 ax.YColor = 'blue';

37 ax.FontSize = 18;

38 hold on;

39 antennaNLR = [1, 4, 5, 7, 8, 10, 11];

40 antennaNM = [1, 3, 4, 5, 6, 7];

41 %% Plot the lines diving Ez

42 distLR = zeros(1,N);

43 distM = zeros(1,N-1);

44 Parr = zeros(1,N);

45 for i = 1:N

46 l = ones(size(x))*((8-i)/7)*0.99;

47 plot(x*1e6, l, '--m', 'linewidth', 2);

48 % This intersection file is from the net

49 P = InterX([x*1e6; l], [x*1e6; NormEz]); lp = length(P(1,:));

50 Parr(i) = P(1,1);

51 LRpoint(i) = P(1,2);

52 distLR(i) = P(1,2) - P(1,1);

53 if i > 1

54 distM(i-1) = P(1,4) - P(1,3);

55 end

56

57 plot(P(1,:), P(2,:), 'ro', 'markersize', 6, 'linewidth', 2);

58

59 end
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60 hold off;

61 widthLR = round(distLR*1e3 ./ antennaNLR);

62 widthM = round(distM*1e3 ./ antennaNM);

63 fprintf('The widths(nm) of antennas to the left or right\n');

64 disp(widthLR.');

65 fprintf('The widths(nm) of antennas in the middle\n');

66 disp(widthM.');

67 f1.PaperUnits = 'points';

68 f1.PaperPosition = [0 0 640 480];

69 print(['./Plot/HermiteGaussMatlab.png'], '-dpng', '-r144');

70 % Plot the straight lines

71 % Manipulate them so they look like the axes in the article

72 % Default jump tolerance is too small

73 EzPhase = unwrap(angle(EzSimp), 3/2*pi);

74 EzPhase = EzPhase - min(EzPhase);

75 %% Plot the phase of Ez

76 f2 = figure(2);

77 PlotPhase = plot(x*1e6,EzPhase, 'r', 'linewidth', 2);

78 ax = gca;

79 title('E_z Phase', 'fontweight', 'bold');

80 xlabel('x(\mum)', 'fontweight', 'bold');

81 ylabel('\Phi(rad)', 'fontweight', 'bold');

82 ax.YTick = [-2*pi, 0, 2*pi, 4*pi, 6*pi];

83 ax.YTickLabel = {'-2\pi', '0', '2\pi', '4\pi', '6\pi'};

84 ax.XColor = 'red';

85 ax.YColor = 'red';

86 ax.FontSize = 18;

87 ax.YLim = ([-2*pi, 7*pi]);

88 hold on;

89 % There are this many scatters adjacent to each other

90 Nadj = 29;

91 vertx = linspace(-max(abs(Parr)), max(abs(Parr)), Nadj);

92 F = griddedInterpolant(x*1e6, EzPhase);

93 % P is the array for phases, whereas Y is the array for coordinate y

94 P_ant = zeros(Nadj, 1);

95 for i = 1:Nadj

96 Nvert = 100;

97 xline = ones(Nvert,1) * vertx(i);

98 y = linspace(-2*pi, 7*pi, Nvert);

99 plot(xline,y, '--c', 'linewidth', 2);

100 P_ant(i) = F(vertx(i));

101 plot(vertx(i), P_ant(i), 'bo', 'markersize', 6, 'linewidth', 2);

102 end

103 f2.PaperUnits = 'points';

104 f2.PaperPosition = [0 0 640 480];

105 print(['./Plot/HermiteGaussMatlabPhase.png'], '-dpng', '-r144');

106 % How much the scatterers are going to be displaced relative to middle

107 % section



76 Appendix B: Matlab Codes

108 Y_ant = -round((P_ant * lspp)/(2*pi));

109 Y_ant = round(Y_ant - mean(Y_ant(12:18)));

110

111 f3 = figure;

112 y = 15e-6;

113 EzSimp = hermiteH(2, ((sqrt(2).*x)./(sqrt(W2(y))))) .* exp((-x.^2)./(W2(y))) .* 1;

114 NormEz = abs(EzSimp)./max(abs(EzSimp));

115 plot(x*1e6, NormEz, '-b', 'linewidth', 2);

116 ax = gca;

117 ax.FontSize = 18;

118 xlim([-7 7]);

119 ylim([0 1.1]);

120 title('Norm', 'fontweight', 'bold');

121 xlabel('x(\mum)', 'fontweight', 'bold');

122 ylabel('|E_z|', 'fontweight', 'bold');

123 hold on;

124 Ez15 = abs(Ez15)./ max(abs(Ez15));

125 plot(xLum, Ez15, 'r--', 'linewidth', 2);

126 legend('Analytic', 'Num 15\mum');

127 f3.PaperUnits = 'points';

128 f3.PaperPosition = [0 0 640 480];

129 print(['./Plot/HermiteGaussCompare.png'], '-dpng', '-r144');

130

131 f4 = figure;

132 y = 10e-6;

133 EzSimp = hermiteH(2, ((sqrt(2).*x)./(sqrt(W2(y))))) .* exp((-x.^2)./(W2(y))) .*

exp((1i*kp.*x.^2)./(2*R(y)));↪

134 NormEz = abs(EzSimp)./max(abs(EzSimp));

135 EzPhase = unwrap(angle(EzSimp), 3/2*pi);

136 EzPhase = EzPhase - min(EzPhase);

137 plot(x*1e6, EzPhase, '-b', 'linewidth', 2);

138 ax = gca;

139 xlim([-7 7]);

140 % ylim([0 1.1]);

141 title('Phase', 'fontweight', 'bold');

142 xlabel('x(\mum)', 'fontweight', 'bold');

143 ylabel('|E_z|', 'fontweight', 'bold');

144 ax.FontSize = 18;

145 hold on;

146 % Ez10 = abs(Ez10)./ max(abs(Ez10));

147 Ez10Phase = unwrap(angle(Ez10), 3/2*pi);

148 Ez10Phase = Ez10Phase - min(Ez10Phase) + pi;

149 plot(xLum, Ez10Phase, 'r--', 'linewidth', 2);

150 legend('Analytic', 'Num 10\mum');

151 f4.PaperUnits = 'points';

152 f4.PaperPosition = [0 0 640 480];

153 print(['./Plot/HermiteGaussComparePhase.png'], '-dpng', '-r144');
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B.5 Triplexer algorithm

B.5.1 Original Triplexer Algorithm

For confirmation of our implementation of the algorithm we reproduced the article

results with the following code.

1 clear;

2 close all;

3 % load('../Data/Takuo2011A_T.mat');

4 load('../Data/kSPP700-1000.mat'); % kspp at silica-gold interface

5 nk = numel(kspp);

6 dy = 20; % in nanometers

7 y_field = -6000:dy:6000;

8 x_slit = -25000:3000:-10000;

9 y_slit = -3000:1500:3000;

10 y_field = y_field * 1e-9;

11 x_slit = x_slit * 1e-9;

12 y_slit = y_slit * 1e-9;

13 wbeam = (17/2)*1e-6; % radius of Gaussian beam

14 GBeam = @(r) exp(-2*r^2/(wbeam^2));

15 % Aint = griddedInterpolant(lambdaLUM(:), A(:));

16 % A_val = Aint(linspace(700, 1000, nk));

17 % A_vec = reshape(A_val, nk, 1); % the wavelength dependence of SPP excitation

18 A_vec = ones(nk, 1);

19 T_vec = ones(size(A_vec)); % the wavelength dependence of transmission normal to the slit

20 r_field = Vector2D; % See the relevant file for class definition

21 r_field.X = zeros(size(y_field));

22 r_field.Y = y_field;

23 r_pattern = Vector2D;

24 r_pattern.X = -17.5e-6;

25 r_pattern.Y = 0;

26 [XXslit, YYslit] = meshgrid(x_slit, y_slit);

27 % Loop over slits

28 Esum = zeros(nk, 601);

29 for i = 1:numel(XXslit) % Careful length does not work here

30 % for i = 1

31 r_slit{i} = Vector2D;

32 r_slit{i}.X = XXslit(i);

33 r_slit{i}.Y = YYslit(i);

34 d{i} = distance(r_slit{i}, r_field);

35 cos_vec{i} = (r_field.X - r_slit{i}.X) ./ d{i};

36 % Adjust for Gaussian beam

37 factor = GBeam(distance(r_slit{i}, r_pattern));

38 % factor = 1;

39 Econtr{i} = (A_vec .* T_vec * factor * (cos_vec{i} ./ sqrt(d{i}))) .* exp(1i .* kspp * d{i});

40 Esum = Esum + Econtr{i};
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41 end

42 f1 =figure;

43 yplot = y_field * 1e6;

44 lplot = lambda * 1e9;

45 Eplot = (abs(Esum).').^2;

46 imagesc(lplot, yplot, 100 * Eplot./(max(max(Eplot))));

47 colormap jet;

48 c = colorbar;

49 ax = gca;

50 ax.YDir = 'normal';

51 ax.FontSize = 18;

52 title('Initial Guess Pattern');

53 xlabel('\lambda(nm)');

54 ylabel('y(\mum)');

55 ylabel(c, 'Field intensity(a.u)');

56 f1.PaperUnits = 'points';

57 f1.PaperPosition = [0 0 640 480];

58 fname = 'Takuo2011_InitialGuessArticle';

59 % print(['./Plot/' fname], '-depsc', '-r144');

60 print(['./Plot/' fname], '-dpng', '-r144');

61 % saveas(f1, ['./Plot/' fname]);x_focus = zeros(1,3);

62 y_focus = [-3, 0, 3] * 1e-6; % focus points

63 l_focus = [820, 850, 880] * 1e-9; % desired wavelengths at focii

64 W = ones(size(y_focus)); % initialize the weight to be 1 as in the article

65 y_focii_ave = mean(y_focus);

66 x_focii_ave = mean(x_focus);

67 q = 0.1;

68 Nite = 40;

69 for i = 1:numel(y_focus)

70 r_focus{i} = Vector2D;

71 r_focus{i}.X = 0;

72 r_focus{i}.Y = y_focus(i);

73 % Beware of floating point numbers

74 y_ind(i) = find(abs(y_field - y_focus(i)) < 0.5e-9);

75 l_ind(i) = find(abs(lambda - l_focus(i)) < 0.5e-9);

76 end

77 lspp_mean = mean(lspp(l_ind));

78 r_focus_ave = Vector2D;

79 r_focus_ave.X = x_focii_ave;

80 r_focus_ave.Y = y_focii_ave;

81 % Calculate the linear indices to avoid a nested for loop

82 lin_ind = sub2ind(size(Esum), l_ind, y_ind); % Verified works well

83 %% The actual iterations take place here

84 %% The actual iterations take place here

85 for i = 1:Nite % total no of iterations defined above

86 Emem = Esum;

87 Esum = 0;

88 % Upgrade W as in the algorithm
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89 if i ~= 1 % Adjust this number if need be

90 W = W .* (max(abs(Emem(lin_ind)).^2)./abs(Emem(lin_ind)).^2).^q;

91 end

92 for n = 1:numel(XXslit) % phase mismatch is averaged for each slit

93 delta_n(n) = angle(sum(W .* Emem(lin_ind) .* conj(Econtr{n}(lin_ind)) ./ ...

94 (abs(Emem(lin_ind) .* abs(Econtr{n}(lin_ind))))));

95 new_dis2foc = distance(r_slit{n}, r_focus_ave) + delta_n(n) * (lspp_mean / (2*pi));

96 xnew = -sqrt(new_dis2foc(1).^2 - (r_slit{n}.Y(1) - r_focus_ave.Y)^2) + r_focus_ave.X;

97 r_slit{n}.X = double(xnew);

98 slit_x(n) = double(xnew);

99 slit_y(n) = r_slit{n}.Y;

100 % Recalculate the fields

101 d{n} = distance(r_slit{n}, r_field);

102 cos_vec{n} = (r_field.X - r_slit{n}.X) ./ d{n};

103 factor = GBeam(distance(r_slit{n}, r_pattern));

104 % factor = 1;

105 % A_vec may be adjusted to incorparate Gaussian beam for each slit

106 Econtr{n} = (A_vec .* T_vec * factor * (cos_vec{n} ./ sqrt(d{n}))) .* exp(1i .* kspp * d{n});

107 Esum = Esum + Econtr{n};

108 end

109 end

110 %% Lets get the fields again to plot

111 Econtr(1,:) = {0};

112 Esum = 0;

113 for i = 1:numel(XXslit) % Careful length does not work here

114 d{i} = distance(r_slit{i}, r_field);

115 cos_vec{i} = (r_field.X - r_slit{i}.X) ./ d{i};

116 % A_vec may be adjusted to incorparate Gaussian beam for each slit

117 factor = GBeam(distance(r_slit{i}, r_pattern));

118 % factor = 1;

119 Econtr{i} = (A_vec .* T_vec * factor * (cos_vec{i} ./ sqrt(d{i}))) .* exp(1i .* kspp * d{i});

120 Esum = Esum + Econtr{i};

121 end

122 f2 = figure;

123 yplot = y_field * 1e6;

124 lplot = lambda * 1e9;

125 Eplot = (abs(Esum).').^2;

126 imagesc(lplot, yplot, 100 * Eplot./(max(max(Eplot))));colormap jet;

127 c = colorbar;

128 ax = gca;

129 ax.FontSize = 18;

130 ax.YDir = 'normal';

131 title('After algorithm Pattern');

132 xlabel('\lambda(nm)');

133 ylabel('y(\mum)');

134 ylabel(c, 'Field intensity(a.u)');

135 f2.PaperUnits = 'points';

136 f2.PaperPosition = [0 0 640 480];
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137 fname = 'Takuo2011_OptimizedArticle';

138 % print(['./Plot/' fname], '-depsc', '-r144');

139 print(['./Plot/' fname], '-dpng', '-r144');

140 % saveas(f2, ['./Plot/' fname]);

141

142 f3 = figure;

143 plotstyle = {'b-', 'g-', 'r-'};

144 maximum = max(max(abs(Esum(:, y_ind)).^2));

145 for m = 1:numel(y_focus)

146 plot(lplot, abs(Esum(:, y_ind(m))).^2 ./maximum, plotstyle{m}, 'linewidth', 2)

147 if m == 1

148 hold on;

149 end

150 legendinfo{m} = [sprintf('y = %2d ', y_field(y_ind(m))*1e6) '\mum'];

151 end

152 xlabel('\lambda(nm)');

153 ylabel('Intensity(a.u)');

154 title('Calculated SPP Intensity');

155 legend(legendinfo);

156 ax = gca;

157 ax.FontSize = 18;

158 f3.PaperUnits = 'points';

159 f3.PaperPosition = [0 0 640 480];

160 fname = 'Takuo2011_IndividualArticle';

161 % print(['./Plot/' fname], '-depsc', '-r144');

162 print(['./Plot/' fname], '-dpng', '-r144');

163 % saveas(f3, ['./Plot/' fname]);

164

165 % plot(slit_x * 1e6, slit_y * 1e6, 'rs', 'MarkerSize', 12);

166 vertX = [-6 -6 6 6];

167 vertY = [-10 10 10 -10];

168 [f4,patchHndl,lineHndl] = plotCustMark(slit_x * 1e6, slit_y *1e6, vertX,vertY,0.03);

169 axis square;

170 box on;

171 grid on;

172 xlabel('x (\mum)');

173 ylabel('y (\mum)');

174 title('Nanoslit Positions');

175 ax = gca;

176 ax.FontSize = 18;

177 f4.PaperUnits = 'points';

178 f4.PaperPosition = [0 0 640 480];

179 axis([-26 0 -4 4]);

180 fname = 'Takuo2011_PositionsArticle';

181 % print(['./Plot/' fname], '-depsc', '-r144');

182 print(['./Plot/' fname], '-dpng', '-r144');

183 % saveas(f4, ['./Plot/' fname]);
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B.5.2 Triplexer for Δ-antennas

This is the code which calculates the positions of the Δ-antennas which yielded the

results used in this thesis.

1 clear;

2 close all;

3 % Run the script which initializes the slit positions etc.

4 Takuo2011CalcDelta;

5 x_focus = zeros(1,3);

6 y_focus = [-4, 0, 4] * 1e-6; % focus points

7 l_focus = [1400, 1500, 1600] * 1e-9; % desired wavelengths at focii

8 W = ones(size(y_focus)); % initialize the weight to be 1 as in the article

9 y_focii_ave = mean(y_focus);

10 x_focii_ave = mean(x_focus);

11 q = 0.1;

12 Nite = 80;

13 for i = 1:numel(y_focus)

14 r_focus{i} = Vector2D;

15 r_focus{i}.X = 0;

16 r_focus{i}.Y = y_focus(i);

17 % Beware of floating point numbers

18 y_ind(i) = find(abs(y_field - y_focus(i)) < 0.5e-9);

19 l_ind(i) = find(abs(lambda - l_focus(i)) < 0.5e-9);

20 end

21 lspp_mean = mean(lspp(l_ind));

22 r_focus_ave = Vector2D;

23 r_focus_ave.X = x_focii_ave;

24 r_focus_ave.Y = y_focii_ave;

25 % Calculate the linear indices to avoid a nested for loop

26 lin_ind = sub2ind(size(Esum), l_ind, y_ind); % Verified works well

27 %% The actual iterations take place here

28 for i = 1:Nite % total no of iterations defined above

29 Emem = Esum;

30 Esum = 0;

31 % Upgrade W as in the algorithm

32 if i ~= 1 % Adjust this number if need be

33 W = W .* (max(abs(Emem(lin_ind)).^2)./abs(Emem(lin_ind)).^2).^q;

34 end

35 for n = 1:numel(XXslit) % phase mismatch is averaged for each slit

36 delta_n(n) = angle(sum(W .* Emem(lin_ind) .* conj(Econtr{n}(lin_ind)) ./ ...

37 (abs(Emem(lin_ind) .* abs(Econtr{n}(lin_ind))))));

38 new_dis2foc = distance(r_slit{n}, r_focus_ave) + delta_n(n) * (lspp_mean / (2*pi));

39 xnew = -sqrt(new_dis2foc(1).^2 - (r_slit{n}.Y(1) - r_focus_ave.Y)^2) + r_focus_ave.X;

40 r_slit{n}.X = double(xnew);

41 slit_x(n) = double(xnew);

42 slit_y(n) = r_slit{n}.Y;
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43 % Recalculate the fields

44 d{n} = distance(r_slit{n}, r_field);

45 cos_vec{n} = (r_field.X - r_slit{n}.X) ./ d{n};

46 %% The above line is replaced

47 rad = atan2((r_field.Y - r_slit{n}.Y), (r_field.X - r_slit{n}.X)) + pi/2;

48 rad(find(rad<0)) = rad(find(rad<0)) + 2 * pi;

49 %% We use the fit here

50 cos_vec2{n} = EzSurfCircInt{1}(rad);

51 aux = [];

52 for ii = 1:length(EzSurfCircInt)

53 aux = [aux; EzSurfCircInt{ii}(rad)];

54 end

55 [LLUM, TT] = ndgrid(lambdaLUM, rad);

56 GI = griddedInterpolant(LLUM, TT, aux);

57 [LL, TT] = ndgrid(lambda, rad);

58 cos_vec2{n} = GI(LL, TT);

59 % Adjust for Gaussian beam

60 Gaussian = GBeam(distance(r_slit{n}, r_pattern));

61 d_mat = repmat(d{n}, 501, 1);

62 F_mat = repmat(A_vec .* T_vec, 1, 601);

63 Econtr{n} = (F_mat .* Gaussian .* (cos_vec2{n} ./ sqrt(d_mat))) .* exp(1i .* kspp * d{n});

64 Esum = Esum + Econtr{n};

65 end

66 end

67 %% Lets get the fields again to plot

68 Econtr(1,:) = {0};

69 Esum = 0;

70 for i = 1:numel(XXslit) % Careful length does not work here

71 d{i} = distance(r_slit{i}, r_field);

72 cos_vec2{i} = (r_field.X - r_slit{i}.X) ./ d{i};

73 %% Fit is used here

74 aux = [];

75 for ii = 1:length(EzSurfCircInt)

76 aux = [aux; EzSurfCircInt{ii}(rad)];

77 end

78 [LLUM, TT] = ndgrid(lambdaLUM, rad);

79 GI = griddedInterpolant(LLUM, TT, aux);

80 [LL, TT] = ndgrid(lambda, rad);

81 cos_vec2{i} = GI(LL, TT);

82 % Adjust for Gaussian beam

83 Gaussian = GBeam(distance(r_slit{i}, r_pattern));

84 d_mat = repmat(d{i}, 501, 1);

85 F_mat = repmat(A_vec .* T_vec, 1, 601);

86 Econtr{i} = (F_mat .* Gaussian .* (cos_vec2{i} ./ sqrt(d_mat))) .* exp(1i .* kspp * d{i});

87 Esum = Esum + Econtr{i};

88 end

89 f2 = figure(2);

90 yplot = y_field * 1e6;
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91 lplot = lambda * 1e9;

92 Eplot = (abs(Esum).').^2;

93 imagesc(lplot, yplot, 100 * Eplot./(max(max(Eplot))));colormap jet;

94 c = colorbar;

95 ax = gca;

96 ax.FontSize = 18;

97 ax.YDir = 'normal';

98 title('After algorithm Pattern');

99 xlabel('\lambda(nm)');

100 ylabel('y(\mum)');

101 ylabel(c, 'Field intensity(a.u)');

102 f2.PaperUnits = 'points';

103 f2.PaperPosition = [0 0 640 480];

104 fname = 'Takuo2011_OptDelta2silica';

105 % print(['./Plot/' fname], '-depsc', '-r144');

106 print(['./Plot/' fname], '-dpng', '-r144');

107 % saveas(f2, ['./Plot/' fname]);

108

109 f3 = figure;

110 plotstyle = {'b-', 'g-', 'r-'};

111 maximum = max(max(abs(Esum(:, y_ind)).^2));

112 for m = 1:numel(y_focus)

113 plot(lplot, abs(Esum(:, y_ind(m))).^2 ./maximum, plotstyle{m}, 'linewidth', 2)

114 if m == 1

115 hold on;

116 end

117 legendinfo{m} = [sprintf('y = %.1f ', y_field(y_ind(m))*1e6) '\mum'];

118 end

119 xlabel('\lambda(nm)');

120 ylabel('Intensity(a.u)');

121 title('Calculated SPP Intensity');

122 legend(legendinfo);

123 ax = gca;

124 ax.FontSize = 18;

125 f3.PaperUnits = 'points';

126 f3.PaperPosition = [0 0 640 480];

127 fname = 'Takuo2011_IndDelta2silica';

128 % print(['./Plot/' fname], '-depsc', '-r144');

129 print(['./Plot/' fname], '-dpng', '-r144');

130 % saveas(f3, ['./Plot/' fname]);

131

132 % plot(slit_x * 1e6, slit_y * 1e6, 'rs', 'MarkerSize', 12);

133 vertX = [-15 15 15];

134 vertY = [0 5 -5];

135 [f4,patchHndl,lineHndl] = plotCustMark(slit_x * 1e6, slit_y *1e6, vertX,vertY,0.05);

136 axis square;

137 box on;

138 grid on;
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139 xlabel('x (\mum)');

140 ylabel('y (\mum)');

141 title('\Delta-antenna positions');

142 f4.PaperUnits = 'points';

143 f4.PaperPosition = [0 0 640 480];

144 ax = gca;

145 ax.FontSize = 18;

146 axis([-26 0 -4 4]);

147 fname = 'Takuo2011_PosDelta2silica';

148 % print(['./Plot/' fname], '-depsc', '-r144');

149 print(['./Plot/' fname], '-dpng', '-r144');

150 % saveas(f4, ['./Plot/' fname]);

151 save('../Data/LumericalDeltaPositions.mat', 'slit_*');

In some of these codes external functions published on file exchange part of the

Matlab Central website were used after minor modifications. The links for these func-

tions are given below.

• Custom Marker Plot - plotCustMark

• Refined Polar Plot - polarticks

http://www.mathworks.com/matlabcentral/fileexchange/39487-custom-marker-plot?focused=3770167&tab=function
http://www.mathworks.com/matlabcentral/fileexchange/46087-polarticks-m


Appendix C

LUMERICAL FDTD SOLUTIONS SCRIPTS

The Lumerical FDTD Solutions program features a scripting language to manip-

ulate simulation objects, provide an interface between Matlab and Lumerical, launch

simulations, and analyze results. The files have the extension ”.lsf” standing for Lumer-

ical Script File.

C.1 Simulation Setup

The following script is used for setting up the simulation and saving them as individual

files to be able to run them on high performance computing cluster. This file also sets

the various monitors used for calculating scattering cross section.

1 # Create the base width vector for the triangular scatterer

2 height = (50:50:300)*1e-9;

3 hmax = 300e-9;

4 base = 500e-9;

5 ##############################################################

6 # start a loop over each desired base width

7 for(i=1:length(height)) {

8 save('Delta500small' + num2str(i) + '.fsp');

9 # switch to layout mode so that you can edit the objects

10 switchtolayout;

11 # set the height of the delta-antenna

12 select("DeltaAntenna");

13 set("Height",height(i));

14 set("Width", base);

15 # set the inner trans_box parameters

16 select("trans_box");

17 set("x1", 280e-9);

18 set("x2", 280e-9);

19 #set("y1", 30e-9 + (height(i)/2));

20 #set("y2", 30e-9 + (height(i)/2));

21 set("y1", 30e-9 + (hmax/2));

22 set("y2", 30e-9 + (hmax/2));

23 # set the TFSF source parameters

24 select("TFSF");
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25 set("y", 0e-9);

26 #set("y span", height(i) + 120e-9);

27 set("y span", hmax + 120e-9);

28 set("x", 0e-9);

29 set("x span", 620e-9);

30 # set the outer trans_box parameters

31 select("trans_box2");

32 set("x1", 340e-9);

33 set("x2", 340e-9);

34 #set("y1", 90e-9 + (height(i)/2));

35 #set("y2", 90e-9 + (height(i)/2));

36 set("y1", 90e-9 + (hmax/2));

37 set("y2", 90e-9 + (hmax/2));

38 # output which simulation is running

39 ?"Setting simulation " + num2str(i) + " of " + num2str(length(height));

40

41 save('Delta500small' + num2str(i) + '.fsp');

42 } # end of the main loop over the radius

C.2 Data Extraction

A sample script used for data extraction inMatlab format is given below. The data from

various monitors on the cube surrounding the scatter is saved in different matrices;

two dimensions are necessary to carry wavelength and height information at the same

time.

1 clear;

2 # The used basewidth values for delta antennas

3 height = linspace(250e-9,1400e-9,24);

4 base = height; # for script purposes

5 # Loop over base width

6 for(i=1:length(base)) {

7 f_name="DeltaHeight"+num2str(i);

8 # Load files

9 load(f_name);

10 temp = getresult("trans_box","T");

11 temp2 = getresult("trans_box2","T");

12 LambdaArr = temp.lambda;

13 f = temp.f;

14 sp=sourcepower(f); # get power injected by source (Watts)

15 I=sourceintensity(f); # get source intensity (Watts/m^2)

16 area = getdata("TFSF","area"); # get source area

17 if (i == 1) {

18 # Reserve the matrices
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19 L = length(temp.lambda);

20 x1 = matrix(length(base), L);

21 x2 = matrix(length(base), L);

22 y1 = matrix(length(base), L);

23 y2 = matrix(length(base), L);

24 z1 = matrix(length(base), L);

25 z2 = matrix(length(base), L);

26 Total = matrix(length(base), L);

27 x1_2 = matrix(length(base), L);

28 x2_2 = matrix(length(base), L);

29 y1_2 = matrix(length(base), L);

30 y2_2 = matrix(length(base), L);

31 z1_2 = matrix(length(base), L);

32 z2_2 = matrix(length(base), L);

33 Total_2 = matrix(length(base), L);

34 Iarr = matrix(length(base), L);

35 SParr = matrix(length(base), L);

36 Areaarr = matrix(length(base), L);

37 }

38 # Transmission data from individual monitors

39 # Uncommenting the following line cancels the normalization

40 #sp = I;

41 x1(i, 1:L) = transpose(transmission("trans_box::x1")*sp/I);

42 x2(i, 1:L) = transpose(transmission("trans_box::x2")*sp/I);

43 y1(i, 1:L) = transpose(transmission("trans_box::y1")*sp/I);

44 y2(i, 1:L) = transpose(transmission("trans_box::y2")*sp/I);

45 z1(i, 1:L) = transpose(transmission("trans_box::z1")*sp/I);

46 z2(i, 1:L) = transpose(transmission("trans_box::z2")*sp/I);

47 Iarr(i, 1:L) = I;

48 SParr(i, 1:L) = sp;

49 Areaarr(i, 1:L) = area;

50 x1_2(i, 1:L) = transpose(transmission("trans_box2::x1")*sp/I);

51 x2_2(i, 1:L) = transpose(transmission("trans_box2::x2")*sp/I);

52 y1_2(i, 1:L) = transpose(transmission("trans_box2::y1")*sp/I);

53 y2_2(i, 1:L) = transpose(transmission("trans_box2::y2")*sp/I);

54 z1_2(i, 1:L) = transpose(transmission("trans_box2::z1")*sp/I);

55 z2_2(i, 1:L) = transpose(transmission("trans_box2::z2")*sp/I);

56 # get total from the analysis object

57 runanalysis;

58 Total(i, 1:L) = transpose(temp.T)*sp/I;

59 Total_2(i, 1:L) = transpose(temp2.T)*sp/I;

60 } # end of the main loop over the radius

61

62 matlabsave('DeltaHeightSweepData.mat');
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C.3 Scatterer positioning for reproduction of SPP beam

The following script positions the Δ-antennas in the correct positions to generate the

Hermite-Gauss beam. Note that the structure ”Antenna” must be defined.

1 # Create the base width vector for the triangular scatterer

2 baseLR = [310, 310, 360, 325, 345, 330, 360] * 1e-9;

3 baseM = [365, 325, 340, 335, 325, 315] * 1e-9;

4 # Create the position vectors for antennas

5 PosXL = [-2604, -2179, -1958, -1784, -1633, -1494, -1362] * 1e-9;

6 PosXR = [2604, 2179, 1958, 1784, 1633, 1494, 1362] * 1e-9;

7 PosXM = [-183, -489, -676, -832, -972, -1104] * 1e-9;

8 # Create arrays for the number of antennas

9 NumLR = [1, 4, 5, 7, 8, 10, 11];

10 NumM = [1, 3, 4, 5, 6, 7];

11 ydisp = 605e-9; # as in the article

12 yheight = 505e-9; # height of antennas

13 # Create the array for the displacement required for the realization

14 # of the phase difference

15 Pdisp = [622, 577, 536, 498, 463, 431, 403, 378, 356, 338, 323, 9] * 1e-9;

16 # switch to layout mode so that you can edit the objects

17 switchtolayout;

18 select("::model::ScriptGenerated");

19 delete;

20 for(i=1:length(baseLR)) {

21 # Put the antennas to the left

22 for(j=1:NumLR(i)) {

23 select("Antenna");

24 copy;

25 set("x", PosXL(i) - (2*j - 1)*baseLR(i)/2 );

26 set("y", 0 - ydisp*(i-1) - yheight/2 + Pdisp(12-j));

27 set("name", "AntennaL" + num2str(i) + num2str(j));

28 set("Width",baseLR(i));

29 set("enabled", 1);

30 addtogroup("ScriptGenerated");

31 } # end of for loop for antennas to the left

32 if (i > 1) {

33 i = i - 1;

34 for(j=1:NumM(i)) {

35 select("Antenna");

36 copy;

37 set("x", PosXM(i) + (2*j - 1)*baseM(i)/2 );

38 set("y", 0 - ydisp*(i) - yheight/2);

39 set("name", "AntennaM" + num2str(i) + num2str(j));

40 set("Width",baseM(i));

41 set("enabled", 1);

42 addtogroup("ScriptGenerated");
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43 }

44 i = i + 1;

45 }

46 # Put the antennas to the left

47 for(j=1:NumLR(i)) {

48 select("Antenna");

49 copy;

50 set("x", PosXR(i) + (2*j - 1)*baseLR(i)/2 );

51 set("y", 0 - ydisp*(i-1) - yheight/2 + Pdisp(12-j));

52 set("name", "AntennaR" + num2str(i) + num2str(j));

53 set("Width",baseLR(i));

54 set("enabled", 1);

55 addtogroup("ScriptGenerated");

56 } # end of for loop for antennas to the left

57 } # End of for loop for the number of rows

C.4 Scatterer positioning for triplexer

The following script positions the nanoslits in an aperiodic array to achievewavelength

demultiplexing by focusing three wavelengths at distinct focii.

1 matlabload("../Data/LumericalSlitPositions.mat");

2 for(i=1:length(slit_x)) {

3 select("Nanoslit");

4 copy;

5 set("x", slit_x(i));

6 set("y", slit_y(i));

7 set("name", "Scatterer" + num2str(i));

8 set("enabled", 1);

9 addtogroup("ScriptGenerated");

10 } # end of for loop
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